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Abstract Some simple indices are used to describe
global climate variability in observational data and
climate model simulations. The indices are surface
temperature based and include the global-mean, the
land–ocean contrast, the meridional gradient, the inter-
hemispheric contrast, and the magnitude of the annual
cycle. These indices contain information independent of
the variations of the global-mean temperature for un-
forced climate variations. They also represent the main
features of the modelled surface temperature response to
increasing greenhouse gases in the atmosphere. Hence,
they should have a coherent response for greenhouse
climate change. On interannual and decadal time scales,
the variability and correlation structure of the indices
from long control climate model simulations compare
well with those from detrended instrumental observa-
tions for the twentieth century and proxy based climate
reconstructions for 1700–1900. The indices provide a
simple but effective way to evaluate global-scale climate
variability in control climate model simulations. On
decadal time scales, the observed correlation structure
between the indices during the twentieth century shows
significant differences from the detrended observations
and control model simulations. These changes are

consistent with forced climate variations in greenhouse
climate change simulations. This suggests that the
changes in the correlation structure between these indi-
ces can be used as an indicator of climate change.

1 Introduction

There has been much recent public and scientific interest
in climate variability and change, and the possible role
of human activity in observed climate change. A com-
prehensive assessment of scientific understanding of this
subject is provided in the IPCC Third Assessment Re-
port (TAR) (Houghton et al. 2001). Several related
issues that arise from that assessment are considered in
this study. They include evaluation of the performance
of climate models in simulating unforced, internal vari-
ability of the climate system, comparison of forced cli-
mate model simulations with the recent observed climate
record, and a simple approach for communicating
information about changes in global-scale surface tem-
perature patterns.

Most studies of climate variability and change have
considered variations of surface air temperature because
it has a reasonably long and high quality observational
record. Many studies have used the global-mean surface
temperature to establish the degree and significance of
changes in climate over the last century. This is because
global-mean temperature is expected to respond to
radiative forcing changes associated with increasing
greenhouse gases and because it enhances the signal-
to-noise ratio through averaging (for example, see Fig.
12.7 of Mitchell et al. 2001). Global-mean temperature is
also a simple indicator used to compare internal climate
variability from unforced climate model simulations
with observations (for example, see Fig. 12.1 of Mitchell
et al. 2001). Hence, global-mean temperature is com-
monly used as the simplest index of global climate
variability and change.
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There is additional information in the patterns of
surface air temperature variations, apart from the
global-mean. In this study, we use some other simple
indices of surface temperature patterns, including the
land–ocean temperature contrast, the meridional tem-
perature gradient, the inter-hemispheric contrast, and
the magnitude of the annual cycle, to describe global
climate variability and change. These indices are asso-
ciated with dynamical factors determining aspects of the
large-scale atmospheric circulation. They are expected to
contain information independent of the global-mean
temperature for internal climate variations. The indices
also represent the main features of the modelled surface
temperature response to increasing greenhouse gases in
the atmosphere. Hence, they should have a coherent
response for greenhouse climate change.

Preliminary results from this study were presented by
Karoly and Braganza (2001) but they are greatly
extended here. We use global instrumental observations
for 1880–1999, climate reconstructions from proxy data
for 1700–1900, and simulations from five different cou-
pled ocean–atmosphere climate models to investigate the
variability and correlation structure of these indices on
interannual and decadal time scales. The indices are used
to evaluate the performance of control climate model
simulations of internal climate variability. As the indices
are expected to contain independent information for
internal climate variations but show a coherent response
to greenhouse forcing, the observed correlation structure
of the indices is compared with forced and unforced
model simulations.

The instrumental observational record is short (only
about 120 years of useful information) and estimates of
internal, natural climate variability may be affected by
contamination of variability on all space and time scales
by the response to anthropogenic forcing. Thus, we turn
to two other data sources that give us complementary
information about the variability of the indices, though
each of these sources has its own limitations and un-
certainties. Better statistics are available from the long
model control simulations by taking multiple 120-year
samples to provide an ensemble, and averaging the re-
sults from the ensemble to better estimate the statistics
of interest and the uncertainty associated with using a
single 120-year sample. Of course, this is only for the
simulated climate and may not realistically represent the
variability in the real climate. Longer and independent
records of the indices from the real climate system are
available from climate reconstructions from proxy data,
which are used for the period 1700–1900. This provides a
record that is almost twice the length of that from the
instrumental data and is prior to the twentieth century,
so it is much less likely to have been influenced by the
climate response to anthropogenic forcing. Of course,
the indices computed from the proxy data reconstruc-
tions have substantial uncertainties of their own, but
these uncertainties are complementary to the uncer-
tainties in the other two data sources. In particular,
they avoid the potential contamination bias from the

response to anthropogenic forcing in using the instru-
mental data alone.

The observational and model data sets are described
in the next section and the indices are defined in Sect. 3.
The observed and modelled variability of the indices are
compared in Sect. 4 and the correlation structure of the
indices is examined in Sect. 5. Some conclusions on
possible uses of these indices are presented in the final
section.

This is the first part of a two-part study that seeks to
examine the variations of the indices in observations
over the last 120 years and in model simulations of un-
forced climate variability and the response to anthrop-
ogenic forcing. In the second part, we describe the
observed trends in the indices and compare them with
climate change simulations.

2 Datasets

2.1 Observations

2.1.1 Instrumental surface temperature

The observational data used here are a combined data set based on
5� resolution gridded surface air temperature anomalies over land
(Jones 1994; Jones et al. 1999) and 5� gridded sea surface temper-
ature anomalies (Parker et al. 1995). These data are obtained from
quality controlled instrumental observations and have been used in
a majority of recent studies in climate change, including the IPCC
Second Assessment Report (SAR) (Nicholls et al. 1996) and IPCC
TAR (Folland et al. 2001). These data are used for the period 1880–
1999, with the period prior to 1880 excluded due to sparse cover-
age.

2.1.2 Paleo-climate reconstructions

In addition to the instrumental record described, the multi-proxy
climate reconstructions of Mann et al. (2000a, b) have been used as
a representation of surface temperature variations for the period
1700–1900. Previous studies have shown that these data can be
useful in supplementing the more recent observed data and hence
provide a longer context to recent observed climate variations
(Bradley and Jones 1993; Mann et al. 1995, 1998; Jones et al. 1998;
Folland et al. 2001).

Mann and colleagues used multi-proxy networks of high-reso-
lution natural archives such as tree rings, ice cores, and corals,
combined with long historical and instrumental records, to recon-
struct climate patterns several centuries back in time. These include
large-scale surface temperature patterns (Mann et al. 1999, 2000a,
b), indices of the El Nino/Southern Oscillation (‘‘ENSO’’) phe-
nomenon (Mann et al. 2000a, b), the North Atlantic Oscillation
(Cullen et al. 2001), and patterns of internal (Delworth and Mann
2000) and externally-forced (Waple et al. 2002) climate variability.

The Mann et al. approach to paleo-climate reconstruction has
been discussed elsewhere in more detail (Mann et al. 1998, 1999,
2000a, b). The method involves a multivariate calibration of the
leading eigenvectors of the twentieth century surface temperature
record against a global network of diverse proxy indicators. This
approach exploits the large-scale structure and complementary
seasonal and climatic information in a diverse network of climate
proxy indicators in reconstructing past global surface temperature
patterns. Significant skill in these reconstructions has been indi-
cated in independent cross-validation exercises (Mann et al. 1998,
1999, 2000a, b) and appropriate self-consistent uncertainties have
been estimated back in time. The annual-mean reconstructions of
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Mann et al. (1998) have recently been extended to include distinct
warm and cold-season reconstructions (Mann et al. 2000b). From
the reconstructed surface temperature patterns, global, hemi-
spheric, or regional averages of interest are readily evaluated.

The methodology employed in these proxy-based climate re-
constructions assumes that each proxy record exhibits a linear re-
lationship with one or more of the principal components (PCs) of
the instrumental surface temperature record. The methodology
does not assume that the proxy record is itself necessarily an in-
dicator of temperature. Only carefully screened records with annual
resolution and dating were used. For the period after 1820, when all
112 records were available, it was possible to skillfully reconstruct
11 PCs, or temperature patterns, calibrating (and cross-validating)
between 30–40% of the total instrumental surface temperature
variance, and 70–80% of the instrumental variance in Northern
Hemisphere (NH) mean temperature. For the period 1700–1900
over which the proxy based reconstructions are used in this study,
they are approximately homogeneous in terms of the available
proxy indicator network and resolved temperature variance at the
largest scales (at least 60–70% of the NH mean temperature vari-
ance is resolved). The proxy reconstructions are used to estimate
the same indices as the instrumental observations. The spatial de-
tails of the reconstructions are discussed elsewhere (Mann et al.
2000b; data available electronically through the NOAA Data
Centre for Paleoclimatology).

2.2 Global climate models

Near-surface air temperature data from five coupled ocean–atmo-
sphere climate models are included in this analysis. Each of the
models was also used in the IPCC TAR (McAvaney et al. 2001).
Very brief descriptions of the models are given.

2.2.1 The US Geophysical Fluid Dynamics Laboratory GCM
(GFDL R30)

A spectral atmospheric model with rhomboidal truncation at wave
number 30 equivalent to 3.75� longitude · 2.2� latitude (96 · 80)
with 14 levels in the vertical. The atmospheric model is coupled to
an 18 level gridpoint (192 · 80) ocean model where two ocean grid
boxes under-lie each atmospheric grid box exactly. Both models are
described by Delworth et al. (submitted 2001) and Delworth and
Knutson (2000). The IPCC TAR nomenclature for this model is
GFDL_R30_c.

2.2.2. The Australian CSIRO Mark 2 GCM (CSIRO Mk2)

An atmospheric R21 spectral model with an equivalent horizontal
resolution 5.6� longitude · 3.2� latitude (64 · 56) and 9 levels in the
vertical. This is coupled to a gridpoint ocean model of the same
horizontal resolution with 21 vertical levels (Gordon and O’Farrell
1997; Hirst et al. 2000).

2.2.3. The UK Meteorological Office Hadley Centre GCMs
(HadCM2 and HadCM3)

Both GCMs use the same atmospheric horizontal resolution, 3.75�
· 2.5� (96 · 72) finite difference model (T42/R30 equivalent) with
19 levels in the atmosphere and 20 levels in the ocean (Johns 1996;
Johns et al. 1997). For HadCM2, the ocean horizontal grid lies
exactly under that of the atmospheric model. The resolution for the
ocean component of HadCM3 has been greatly improved (1.25� ·
1.25�) with six ocean grid boxes for every atmospheric grid box. In
the context of results shown here, the main difference between the
two models is that HadCM3 includes improved representations of
physical processes in the atmosphere and the ocean (described by
Gordon et al. 2000). For example, HadCM3 employs a radiation
scheme that explicitly represents the radiative effects of minor

greenhouse gases as well as CO2, water vapour and ozone (Edwards
and Slingo 1996), as well as a simple parametrization of back-
ground aerosol (Cusack et al. 1998).

2.2.4 The German Max-Planck-Institute fur
Meteorologie GCM (ECHAM4/OPYC3)

An atmospheric T42 spectral model equivalent to 2.8� longitude ·
2.8� latitude (128 · 64) with 19 vertical layers (Roeckner et al.
1996a). The ocean model OPYC3 uses isopycnals as the vertical
coordinate system (Oberhuber 1993). As with HadCM3, ECHAM4
also explicitly represents the effects of a range of greenhouse gases
and includes an explicit treatment for the radiative effects of
aerosols. A full description of the coupled model can be found in
Roeckner et al. (1996b).

All the GCMs include sea-ice models and representation of
land-surface processes. CSIRO Mk2, GFDL R30 and HADCM2
all include seasonal adjustments of heat and fresh water fluxes at
the surface to reduce climate drift in the coupled model simula-
tions. ECHAM4 has annual mean flux adjustments only (heat and
water) while HADCM3 has no flux adjustments and maintains a
stable control climate simulation.

2.3 Model simulations

We use data from long control simulations with each of the models
that have been performed without any change to the external
forcing parameters. They therefore represent the intrinsic vari-
ability of the modelled coupled ocean–atmosphere system. The
experiments from which we have data available are a 1000 year
control simulation from CSIRO Mk2 (Hirst 1999; Hirst et al.
2000), 990 years of data from HadCM2 (Johns et al. 1997; Tett et al.
1997), 1830 years from HadCM3 (Collins et al. 2001; Johns et al.
submitted 2002), 500 years from GFDL-R30 (Delworth et al. 2000)
and 240 years from ECHAM4 (Roeckner et al. 1996).

We also make use of a series of simulations of the climate re-
sponse to anthropogenic forcing. The radiative forcing experiments
used here include anthropogenic changes in greenhouse gases and
sulfate aerosols. For the CSIRO Mk2, GFDL and HadCM2
models, these changes are expressed as an increase in equivalent
CO2 according to IPCC scenario IS92a along with changes in an-
thropogenic sulfate aerosols represented through regional changes
to surface albedo. For the HadCM3 and ECHAM4 models,
increases in individual major anthropogenic greenhouse gases are
included, together with explicit treatment of the direct radiative
effect of sulfate aerosols. HadCM3 also includes a parameterization
for indirect sulphate forcing effects via cloud albedo changes as well
as a representation of anthropogenic changes to tropospheric and
stratospheric ozone (Johns et al. 2002). From HadCM2 and Had-
CM3, we have four independent members of an ensemble of sim-
ulations with increasing greenhouse gases and sulfate aerosols
(GS), three GS ensemble members from GFDL R30, two from
ECHAM4 and one from CSIRO Mk2.

2.4 Data coverage

Observations over the past century are not uniform in their spatial
coverage with large areas of missing data, particularly in the early
part of the record. However the suitability of the observational data
to estimate global climate variability has been reasonably established
(Jones 1995; Parker et al. 1995). In order to overcome the differences
in spatial coverage between the observations and models, a data
mask was created to exclude regions where the observations were
sparse or non-existent. This mask was applied to both observations
and model data. Reasonable coverage in the observations was
deemed to be areas that had at least 40 years of data since 1900. The
year was defined as the four-season average from December to No-
vember, not the normal calendar year. A year was included for a grid
box if at least two seasons haddata present although, in practice, very
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few of the grid boxes had less than three seasons with data in a single
year. The variability of the December–November annual averages is
almost identical to the variability of the calendar year annual means.
The use of a fixed data mask over one that matched the temporal
variation in data coveragewas based on the fact that the sensitivity of
the indices to variations in the mask was found to be small in both
observations and control simulations. The data mask used in this
study is shown in Fig. 1. As a result of applying the mask, large
regions of the Southern Ocean and Antarctica, as well as smaller
regions in the high northern latitudes and over the interior of the
southern continents have been omitted from the analysis.

For the proxy based climate reconstructions, the indices are
computed using the same data mask as the instrumental data but the
effective resolution of the proxy data is much poorer. The resolved
variance of the proxy reconstructions on smaller spatial scales is
much less than at hemispheric scales in the Northern Hemisphere.
The reliability of the proxy reconstructions is lower in the Southern
Hemisphere and for seasonal variations, compared with annual
mean variations. Hence, we would expect the indices from the proxy
reconstructions to compare better with the instrumental observa-
tions for very large area-averages, such as for the global or hemi-
spheric means, or for the land–ocean temperature contrast.

3 Defining the global indices

As outlined, we want to define simple global indices that
capture the key features of the pattern of surface tem-
perature change due to increasing greenhouse gases. In
defining a number of indices, it is also important that
each index be reasonably independent under internal,
low frequency climate variability. In this manner, the
indices can contribute additional information about the
nature of the observed and modelled climate change and
can also be considered together as a unique, collective
signal. One of the main purposes here is to examine the

variability and correlation structure of the chosen indi-
ces in order to assess their suitability as independent
indices of climate change.

Five simple indices based on surface temperature
patterns are used. Apart from the global-mean temper-
ature, all the other indices are based on differences of
mean temperatures between different regions or times.
Hence, by construction, variations of these indices are
likely to not be strongly related to variations of global-
mean temperature. All the indices have been identified
previously in studies of climate variability and change,
although they have not been considered together, except
by Karoly and Braganza (2001). The surface tempera-
ture data are anomalies relative to a 30-year reference
period from the control simulations for model data and
relative to the period 1961–1990 in the observations
(Jones 1994; Jones et al. 1999).

1. Global-mean surface temperature (GM): The area-
weighted global average of surface temperature, which
has been the parameter most commonly used in climate
change studies.

2. The contrast between land and ocean surface tempera-
ture (LO): LO is defined as the difference between mean
surface air temperature (SAT) over land and mean sea
surface temperature (SST). This index has been chosen to
capture the pattern of greater and more rapid warming
over land than ocean (SAT – SST) that has been identi-
fied in previous studies (Jain et al. 1999; Meehl et al.
1993). LO is also a factor in large scale atmospheric
circulation and has long been identified with the strength
of the monsoons (Piexoto and Oort 1992).

Fig. 1 Data mask used in the
calculation of the indices from
both observed and modelled
data. White areas indicate
regions included in the analysis.
Shaded areas indicate regions of
sparse coverage (less than 40
years of data since 1900) that
were excluded from the analysis
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3. The inter-hemispheric difference in surface temperature
(NS): NS is defined as mean Northern Hemisphere
(NH) temperature minus the mean Southern Hemi-
sphere (SH) temperature. This index has been chosen to
represent the influence of anthropogenic sulphate aero-
sols in the NH, which contribute to relative cooling in
the NH (Kaufmann and Stern 1997; Meehl et al. 1993;
Santer et al. 1996a; Wigley et al. 1998).

4. The mean magnitude of the annual cycle in temperature
over land (AC): The magnitude of the annual cycle was
calculated for each hemisphere by subtracting mean
winter from mean summer surface temperature over
land. These quantities were then area-weighted by the
fraction of global land surface area in the respective
hemisphere and combined into a single index.

AC ¼ wNH JJA �DJFh i þ wSH DJF� JJAh i

Note that AC is effectively the seasonal range between
winter and summer temperatures and will be somewhat
less than the magnitude of the annual cycle estimated
by fitting a sinusoid to the monthly temperatures. The
variations of AC computed here are highly correlated
with those calculated from fitting a sinusoid to monthly
data. For the proxy data, AC was estimated from the
difference between warm season and cold season
reconstructions, which will have slightly less variance
than the summer minus winter seasonal differences.

AC has been chosen to represent the relative strength
of seasonal warming in the observations which studies
have suggested shows increased warming over land
during winter (Thomson 1995; Mann and Park 1996).

5. The mean meridional temperature gradient in the NH
mid-latitudes (MTG): MTG is defined as the difference
of two zonal bands representing the NH mid to high
latitudes (52.5�N–67.5�N) minus the NH sub-tropics
(22.5�N–37.5�N). MTG has been chosen to represent the
expected polar amplification of the warming due to in-
creasing greenhouse gases (Manabe and Stouffer 1980;
Wigley and Barnett 1990) and the recent observed pat-
tern of greater warming in high latitudes compared to
the tropics (Gitelman et al. 1997, 1999; Jain et al. 1999).
It is also associated with the large-scale atmospheric
circulation as a measure of baroclinicity and the strength
of mid-latitude weather systems (Piexoto and Oort
1992). A positive trend in MTG corresponds with a
decrease in the magnitude of the normal temperature
decrease with latitude in the NH.

4 Climate variability

In this section, the observed variability of the indices on
interannual and decadal time scales is compared with the
variability in the control and forced climate model
simulations. In this manner, we evaluate the quality of
the coupled model simulations of internal climate vari-
ability. This variability is estimated using the standard

deviation of the indices. To estimate the variability on
decadal time scales, the time series of the annual values
of the indices are filtered with a low pass, 21 point bi-
nomial filter (half power at periods of 10 years) as used
in IPCC TAR (Folland et al. 2001).

As there are significant observed trends in the indices
over the twentieth century (Karoly and Braganza 2001),
these trends must be removed to obtain an estimate of
the unforced climate variability from the observational
data. A polynomial (4th order) trend was fitted to the
120-year (1880–1999) time series of each of the observed
indices. The residuals, after removing this trend, are
taken as the detrended observations and used to esti-
mate the internal or unforced variability of the observed
climate. The variability of the detrended indices for this
120-year period is compared with 120-year samples from
the long control climate integrations and with the vari-
ability estimated from the proxy data reconstructions.
These are in turn compared with the variability of recent
observed climate (with the trends included) and with
those of the forced model experiments. The results for
the detrended observations prove to be relatively in-
sensitive to the order of the polynomial used to represent
the century-scale trend. However, as higher-order poly-
nomials are used to represent the trend, more of the low-
frequency (decadal) variability is assigned to the century
scale trend and less is included in the residuals.

A comparison of the recent observations with esti-
mates of past climate variability is illustrated in Fig. 2,
which shows low-frequency variations in each of the
indices from proxy data, recent instrumental observa-
tions and the detrended observations. The significant
trends in the indices during the last 50 to 100 years are
reconstructed with good accuracy by the proxy data for
four of the five indices, GM, LO, MTG and NS. While
no significant trends exist in the paleo-climate recon-
structions prior to the twentieth century, the decadal
variability of the proxy data for the period 1700–1900
compares well with that of the recent detrended obser-
vations. For the annual cycle index, the proxy data un-
derestimates the decadal variability and shows no recent
trend, unlike that observed. This result reflects the in-
ability of the paleo-climate reconstructions to accurately
resolve seasonal scale temperature variability.

While Fig. 2 may indicate that the detrending method
applied here is reasonable, amore quantitative assessment
is necessary if we are to use such estimates to evaluate the
simulated unforced variability of the climate models.
Since the influence of external forcing may affect vari-
ability at all temporal and spatial scales (Hu et al. 2001;
Meehl et al. 2000), removal of the non-linear trend does
not guarantee that the residuals accurately represent
internal climate variability. In order to test the effective-
ness of the detrending method, time series of the indices
from theGS-forced simulationswith theCSIROMk2and
HadCM2 models were detrended and compared with
intrinsic variability estimates from control climate simu-
lations, paleo-climate reconstructions and the recent
detrended observations. In all of the climate models used
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here, no significant trends exist in any of the indices of the
long control integrations and hence, no detrending has
been applied to the timeseries of these indices. Similarly,
as shownabove and inFig. 2, the paleo-climate indices for
the period 1700–1900 also show no significant trends and
are therefore not detrended. The absence of large linear
trends in global temperature during this period is common
to several different paleoreconstructions (for example, see
Briffa et al. 2001) and is most likely related to a lack of
significant trends in radiative forcing (Crowley 2000).
Proxy data reconstructions for the period after 1900 are
not included in the analysis. Table 1 and Fig. 3a show the
interannual and decadal standard deviations, respective-
ly, of the indices for the detrended forced model simula-

tions for the period 1880–1999 and for the different
estimates of internal climate variability. Standard
deviations of the control model runs are estimated using
the mean standard deviation of overlapping 120-year
samples taken at 50-year intervals. Also shown are the
estimated 90%confidence intervals, basedon the student t
distribution, for the standard deviation. These uncer-
tainty estimates are derived from the multiple 120-year
samples from the long control simulations, excluding
ECHAM4 for which we have only 240 years of data.

The standard deviations of the detrended GS resid-
uals are compared with those from the control simula-
tions in Table 1. For both models and for all the indices
and their components, the variability of the detrended

Fig. 2a–e Low-pass filtered (decadal) time series of each of the
indices from proxy data reconstructions (1700–1980) and instru-
mental observations (1880–1999). Also shown are the 4th order

polynomial trend fitted to the instrumental observations and the
low-pass filtered residual from this trend, which represent the
decadal, detrended observed time series
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indices from the GS-forced simulations is not signifi-
cantly different from the control simulations. This sug-
gests that the long-term signal of GS forcing can be
removed by the polynomial detrending. The variability
of the detrended observations compares very well with
the control climate simulations and proxy climate data
for each of the indices and their components. In general,
the standard deviation of the detrended observations is
within the 90% confidence interval of the control run
standard deviation for all the models at both interannual
and decadal time scales. There are a small number of
exceptions, such as the models generally underestimating
the interannual variability of NH land temperature in
winter and the interannual variability of the land–ocean
temperature contrast. The decadal variability of MTG is
found to be significantly larger in all the model simula-
tions in comparison with observations. The reasons for
this are unclear, as the interannual variability of MTG in
the models is not significantly larger than observed. In
terms of model comparison, CSIRO Mk2 has slightly
less variability than the other models, perhaps because
of its lower resolution. There do not appear to be con-
sistent differences between the variability simulated by
HadCM3, with no flux adjustment, and that simulated
by the GFDL, HadCM2 and ECHAM models, which
include flux adjustment.

Even though one may expect climate models to rea-
sonably simulate the variability of global-scale parame-
ters, it is a significant validation that these quite different
models should so accurately simulate the variability of
all the indices and their components. For some of the
indices, the standard deviation from the proxy data
underestimates the variability in the detrended obser-
vations and the control model simulations. This occurs
for the variability of the seasonal temperatures over
land, the magnitude of the annual cycle (AC), and the
meridional temperature gradient (MTG). As noted by
Mann et al. (2002b), the seasonal proxy reconstructions
seriously underestimate the temperature variance, even
on the largest scales.

Figure 3b shows the decadal standard deviations of
the observed indices (trend included) from 1881–1999
compared with the ensemble-average standard deviation
of forced GS runs over the same simulated period. Error
estimates are based on the maximum range of values
from different ensemble members for HadCM2, Had-
CM3 and GFDL R30. For CSIRO Mk2 (single GS run)
and ECHAM4 (2 ensemble members), no error esti-
mates were calculated due to the small number of
ensemble members. As expected, the indices show
increased decadal standard deviations under anthropo-
genic forcing compared to the control simulations. This
increase is largely due to the inclusion of century scale
trends in all of the indices in both observations and GS
simulations (Karoly and Braganza 2001). The magni-
tude of decadal variability is also similar for observa-
tions and models. For the annual cycle, the observed
standard deviation is greater than that for GS forcing
and is associated with an observed trend in AC that is

larger than the model simulations for the same period
(Karoly and Braganza 2001). Investigating the signal of
climate change on decadal to century time scales is likely
to be better served through the comparison of the
magnitude and time evolution of any trends in the
indices. As outlined earlier, this will be the subject of a
subsequent paper.

5 Relative correlations of the indices

Next, we consider the correlations between the indices
associated with decadal and interannual variations. As
mentioned earlier, in order to have an appropriate set of
climate change indices, each must be reasonably inde-
pendent for internal climate variability. Table 2 and
Fig. 4a show the interannual and decadal timescale
correlations, respectively, of the indices and their com-

Fig. 3 Standard deviations (in �C) of decadal variations of the
indices from: a detrended observations and control model
simulations. Error bars represent uncertainty at the 90% confi-
dence interval estimated by resampling the long control simula-
tions. b Observations and GS-forced model simulations. Error bars
represent uncertainty associated with the range of values from
individual ensemble members. The indices are the global mean
temperature (GM), land–ocean temperature contrast (LO), inter-
hemispheric temperature contrast (NS), magnitude of the annual
cycle over land (AC), and the meridional temperature gradient in
the NH (MTG)
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ponents with the global-mean temperature (GM) in the
detrended observations, proxy data, and control climate
model simulations. Once again, it is notable how well the
models simulate the magnitude or at least relative
strengths of the correlations with GM. Since the global-
mean temperature is the area-weighted sum of the land
and ocean temperatures, it is not surprising that both
land and ocean temperature variations are closely re-
lated to variations of GM. However, the land–ocean
contrast (LO) is not closely related to GM because, by
construction, it is the difference between the land and
ocean temperatures. Similarly for NS, AC and their re-
spective components. Under GS forcing (Fig. 4b), the
correlations of the LO, AC and MTG indices with GM
are much greater than under internal variability in the
model experiments and in the recent observations. This
increase in correlation is associated with the common
response of the indices to GS forcing in the model sim-
ulations, leading to trends in all these indices. The ex-
ception here is the annual cycle of CSIRO Mk2 which
shows no clear signal under GS forcing, and of
ECHAM4, which shows too much association with GM
under internal variability. HadCM2 is perhaps the best
performing model across all of the indices and their
components.

In the case of the interhemispheric temperature
contrast (NS), the correlation of the index with GM is
highly variable between the different models for both
the forced and unforced cases. For HadCM2 and
HadCM3, NS also shows large variability between in-
dividual ensemble members in the GS simulations. The
variability of NS may be associated with sensitivity to
the temporal changes in the relative strengths of
greenhouse gas and sulfate aerosol forcing (Santer et al.
1996b), as well as sensitivity to the simulated ocean
heat uptake in the Southern Hemisphere (Karoly and
Braganza 2001). Here, NS was also found to be highly
correlated with LO in simulations of internal variabil-
ity, particularly on decadal time scales (Table 3), al-
though this structure is not seen in the observations or
proxy data. The correlation in the models is likely due
to the larger land fraction in the NH, particularly for
the masked region that we are considering. As we are
trying to identify indices that are independent of each
other for natural climate variations and have a clear
signal of anthropogenic climate change, the NS index
does not satisfy these criteria and is not considered
further here.

As a further test of the correlation structure of the
indices, the inter-dependence of the indices is also
investigated. This has been done by calculating the
determinant of the correlation matrix of the indices GM,
LO, AC and MTG on decadal time scales. The value of
the determinant gives an estimate of the relative strength
of the association between the indices. By definition, if
all the indices are totally independent, the determinant
equals unity while if any one of the indices is linearly
dependent (highly correlated) with any other, the de-
terminant falls to zero. Figure 5 shows the determinantT
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of the correlation matrix on decadal time scales under
internal variability (control integrations, proxy data
1700–1900 and detrended observations) and for GS
forcing over the last 120 years (1880–1999). For almost
all the control model cases and the detrended observa-
tions, it can be seen that, while there is by no means total
independence between the indices, the determinant is

significantly higher than zero for internal climate vari-
ations. The only exception to this is the much shorter
time series of ECHAM4. More importantly, there is a
significant reduction in the magnitude of the determi-
nant and hence much stronger coherence between the
indices in the observations and GS runs over the twen-
tieth century. This coherence between the indices is due
to the common response of the indices to GS forcing in
the models, leading to the trends in all these indices
during the twentieth century. As the signal of climate
change increases into the twentyfirst century, the deter-
minant falls to zero in all model cases.

6 Discussion

We have defined a set of simple indices of surface air
temperature patterns to describe global climate vari-
ability in observational data and climate model simula-
tions. These are the global-mean temperature (GM), the
land–ocean contrast (LO), the meridional gradient
(MTG), the interhemispheric contrast (NS), and the
magnitude of the annual cycle (AC). Since enhancement
of the signal-to-noise ratio is improved by considering
large spatial scales (Wigley and Barnett 1990; Stott and
Tett 1998), defining indices based on large area averages
increases the probability of climate change detection.
The indices are also associated with dynamical factors
that influence the large-scale circulation of the atmo-
sphere. On interannual and decadal time scales, these
indices contain information independent of the varia-
tions of the global-mean temperature for unforced cli-
mate variability. The five GCMs perform surprisingly
well in simulating the magnitude of the variability and
correlation structure of the indices for internal climate

Fig. 4 Correlations of decadal variations of the indices with
global-mean temperature (GM) from: a detrended observations
and control model simulations. Error bars represent uncertainty at
the 90% confidence interval. b Observations and GS-forced model
simulations. Error bars represent uncertainty associated with the
range of values from individual ensemble members

Table 3 Correlations of interannual and decadal variations in
interhemispheric temperature contrast (NS) with land–ocean tem-
perature contrast (LO) from observations and control simulations

Data Interannual Decadal

Observations 0.48 –0.07
Observations
(detrend)

0.51 0.06

Proxy 0.31 0.17
CSIRO Mk2 0.72 ± 0.08 0.68 ± 0.16
HadCM2 0.61 ± 0.12 0.65 ± 0.21
HadCM3 0.50 ± 0.13 0.73 ± 0.10
GFDL-R30 0.65 ± 0.06 0.75 ± 0.18
ECHAM4 0.63 0.73

Fig. 5 Determinants of the correlation matrices for decadal
variations of GM, LO, AC, and MTG from observations, control
model simulations and GS-forced model simulations. Error bars in
the left hand group represent 90% confidence intervals from
resampling the long control runs while those in the right hand
group represent the ranges of values between individual members of
GS ensembles
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variations, in comparison with detrended observations
and proxy climate reconstructions. Hence, the indices
provide a simple but effective way to evaluate global-
scale climate variability in control climate model simu-
lations.

Four of the five indices discussed here; GM, LO, AC
and MTG, prove to be useful indicators of anthropo-
genic climate change. In the same manner as spatial
fingerprints, such a set of global climate indices provides
a coherent signal of anthropogenic climate change. This
signal is apparent not only in the variability and trends
of the indices but also in the apparent associations or
covariability.

As expected, there is a significant increase in standard
deviation on decadal and longer time scales in the recent
observations when compared with detrended observa-
tions, simulated unforced climate variability, and vari-
ability in the proxy record between 1700 and 1900. This
increase is well captured by GS experiments in the range
of different models we have shown here and is associated
with the trends in the observations and the GS-forced
simulations. Of the four indices, the magnitude of change
in AC is perhaps the least well simulated by the models.

In terms of correlation structure, the indices do not
have a strong association with global mean temperature
or each other under internal variability. This is not the
case during the last 120 years of observations, where the
long-term trends in the indices are highly correlated. As
with the variability, this relationship is simulated by the
GS experiments in all of the models. This change in the
correlation structure is due to the coherent response of
the indices to anthropogenic forcing in the model sim-
ulations, with trends in all the indices during the twen-
tieth century.

In an attribution context, the change in the rela-
tionship between the indices may be a useful tool in
distinguishing between different climate forcing mecha-
nisms. This is true from a physical as well as statistical
viewpoint as the indices themselves represent important
physical processes. It remains for further study to in-
vestigate the time evolution of changes in the indices
under unforced and anthropogenic climate variability
and to include different radiative forcing experiments
such as changes to the solar cycle and natural changes in
stratospheric aerosols. This will be considered further in
Part II of this study.

There are other simple indices of climate variability
and change that may have similar properties to those used
here. These include the temperature contrast between the
troposphere and lower stratosphere (Karoly 1989;Karoly
et al. 1994; Santer et al. 1996a) and the diurnal tempera-
ture range (Folland et al. 2001; Risbey et al. 2000). They
have not been used in this study because quite different
datasets are needed for those indices.
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