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ABSTRACT: Ocean salinity records the hydrological cycle and its changes, but data scarcity and the large changes in

samplingmake the reconstructions of long-term salinity changes challenging. Here, we present a new observational estimate

of changes in ocean salinity since 1960 from the surface to 2000m. We overcome some of the inconsistencies present in

existing salinity reconstructions by using an interpolation technique that uses information on the spatiotemporal covari-

ability of salinity taken from model simulations. The interpolation technique is comprehensively evaluated using recent

Argo-dominated observations through subsample tests. The new product strengthens previous findings that ocean surface

and subsurface salinity contrasts have increased (i.e., the existing salinity pattern has amplified).We quantify this contrast by

assessing the difference between the salinity in regions of high and low salinity averaged over the top 2000m, a metric we

refer to as SC2000. The increase in SC2000 is highly distinguishable from the sampling error and less affected by interannual

variability and sampling error than if this metric was computed just for the surface. SC2000 increased by 1.9%6 0.6% from

1960 to 1990 and by 3.3%6 0.4% from 1991 to 2017 (5.2%6 0.4% for 1960–2017), indicating an acceleration of the pattern

amplification in recent decades. Combining this estimate with model simulations, we show that the change in SC2000 since

1960 emerges clearly as an anthropogenic signal from the natural variability. Based on the salinity-contrast metrics and

model simulations, we find a water cycle amplification of 2.6% 6 4.4% K21 since 1960, with the larger error than salinity

metric mainly being due to model uncertainty.
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1. Introduction
The global hydrological cycle comprises the movement of

water through the ocean, atmosphere, cryosphere, and land

systems. It is a central element of Earth’s climate system (Allen

and Ingram 2002; Held and Soden 2006; Trenberth et al. 2007;

Trenberth and Fasullo 2013;Marvel et al. 2017;Watanabe et al.

2018; Allan et al. 2020), yet it is also one of the most poorly

observed and modeled aspects of Earth’s climate system

(Palmer and Stevens 2019). Models and theory predict an

enhancement of the global hydrological cycle in response

to global warming, including the increase of precipitation

(P) intensity (Trenberth 2011) and a pattern amplification

of evaporation (E) minus P (Allan et al. 2014; Held and

Soden 2006).

In a warming climate, the Clausius–Clapeyron (CC) rela-

tionship predicts an increase in the water holding capacity of

air (the saturation water vapor pressure) of approximately

7% per 1K of warming (Trenberth et al. 2003). However,

global total P changes are governed by an energetic con-

straint on evaporation, whichmodels suggest is about 2%K21

(Held and Soden 2006; Sun et al. 2012; Allan et al. 2014;

DeAngelis et al. 2015; Watanabe et al. 2018). Different still,

the intensity of precipitation depends upon the amount of

moisture available, which is governed by the CC relationship,

and feedbacks between convergence and diabatic heating

(Allen and Ingram 2002; Trenberth et al. 2003, 2007; Held and

Soden 2006; Allan et al. 2014). Because of the very strong

patterns of precipitation (Trenberth 2011), changes in in-

tensity are manifested mainly where it already precipitates,

giving rise to the wet-get-wetter and dry-get-drier syndrome

for patterns of precipitation, and thus P2 E changes, at least

over the ocean (Trenberth 2011). A complicating factor is the

effect of aerosols and their changes over time (Andrews et al.

2010; Allan et al. 2014; Watanabe et al. 2018). Some aerosols

act to short-circuit the water cycle, which otherwise acts to

transfer energy to the lower atmosphere via latent heating.

Hence the actual outcome depends on both the amount and

partitioning of aerosol species [i.e., the representative con-

centration pathway (RCP)] and is highly uncertain (Allan

et al. 2020).

However, substantial uncertainties also exist regarding wa-

ter cycle changes (DeAngelis et al. 2015; Hegerl et al. 2015)

because of measurement difficulties and large spatial and
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temporal variability (Hegerl et al. 2015). Attributing variability

is also problematic because of the uncertain impact of aerosols

on clouds and radiation. Precipitation trends are reasonably

well established from Global Precipitation Climatology Project

(GPCP) data (Adler et al. 2018; Vose et al. 2019) and suggest

that global mean trends have been small and are instead domi-

nated by short-term variability and particularly El Niño–
Southern Oscillation (ENSO).

The ocean accounts for ;80% of the global surface fresh-

water flux (Durack 2015). This flux has a distinct pattern with

large-scale regions, such as in the subtropics, having a net

negative freshwater flux (E. P), and large-scale regions in the

higher latitudes, having a net positive freshwater flux (E, P).

This pattern is well reflected in the ocean’s salinity distribution,

making salinity a powerful ‘‘rain gauge.’’ This concept can be

traced toWust (1936) and Sverdrup et al. (1942, 124–127), who

noted first the broad similarity between the mean pattern of

E 2 P and sea surface salinity (SSS). Since then, the focus has

shifted to analyze ocean salinity as an indicator of the hydro-

logical changes (Delcroix et al. 2007; Schmitt 2008; Hosoda

et al. 2009; Helm et al. 2010; Yu 2011; Durack et al. 2012;

Terray et al. 2012; Skliris et al. 2016; Zika et al. 2018). In fact,

given that salinity integrates the highly variable E and P fields

in space and time, ocean salinity is among the best recorders of

long-term changes in E 2 P.

The limited number of longer-term observations of changes

in ocean salinity have suggested a ‘‘fresh gets fresher, salty gets

saltier’’ pattern (Boyer et al. 2005; Durack and Wijffels 2010;

Helm et al. 2010; Durack et al. 2012; Skliris et al. 2016), in line

with expectations based on changes in rainfall (wet get wetter,

dry get drier; Held and Soden 2006; Trenberth 2011; Marvel

et al. 2017). However, the quantification of these salinity

changes, and especially of the inferred changes in the water

cycle, is fraught with substantial uncertainties (Skliris et al.

2016; Zika et al. 2018). One error source is the potential data

biases. These arise, for instance, from changes in the mea-

surement system such as occurred when the traditional titra-

tion method was replaced by electronic salinometers and

conductivity–temperature–depth (CTD) salinity sensors

(Gouretski and Jancke 2000). Further biases might arise be-

cause of unrecognized shifts in the response of the salinometers

during cruises and evaporation/condensation and chemical

changes in the bottles when seawater samples are stored for a

long time before analysis (Sy and Hinrichsen 1986; Gouretski

and Jancke 2000). The most important source of this uncer-

tainty is the historically relatively sparse sampling of salinity

(Fig. 1, discussed later; Hegerl et al. 2015). As a result, many

previous studies limited their focus on changes in surface sa-

linity, for which the sampling is more dense than subsurface

(Durack et al. 2012; Durack 2015). However, the temporal

evolution of surface salinity is significantly noisier than the

corresponding depth-integrated values (Yu 2011; Cheng et al.

2018), making the determination of long-term trends from

surface salinity records alone uncertain.

The vertical integral approach needs to overcome the

sparseness in both space and time of ocean subsurface salinity

observations in the historical record (Boyer et al. 2005; Riser

et al. 2016) (Fig. 1). It also needs to deal with the massive

increase in sampling after the onset of Argo in 2005 (Figs. 1

and 2). Methods to overcome these sampling challenges

include a widely used linear-trend infilling method (Durack

and Wijffels 2010, hereafter DW10), and standard gridding

procedures. However, the former method neglects the non-

linearity of climate-related trends, and the latter methods are

very sensitive to the changing sampling density and method

difference (Fig. 2). Moreover, the majority of the employed

methods are subject to a ‘‘no data, no signal’’ deficiency

(Durack et al. 2014; Wang et al. 2017a) whereby climate signals

could be completely missed by observations. The impact of these

shortcomings is not well known because many salinity reconstruc-

tion products have not been comprehensively validated. But the

large spread exhibited by these products (Fig. 2; Skliris et al. 2016;

Zika et al. 2018) suggests that this impact is potentially severe.

Here, we overcome these limitations by using a field re-

construction method, used in previous work to successfully

reconstruct the ocean’s temperature field to infer changes in

the ocean’s heat content (Cheng et al. 2017). We apply this

method to in situ salinity observations to reconstruct monthly

gridded salinity fields for the upper 2000m since 1960. To

perform interpolation across data-sparse intervals and regions,

the method uses information on the spatiotemporal covari-

ability of salinity taken from the historical coupled climate

model simulations conducted as part of phase 5 of the Coupled

Model Intercomparison Project (CMIP5; Taylor et al. 2012).

The method is then rigorously tested using subsets of data

collocated with earlier ocean observations extracted from the

data-rich Argo era (as ‘‘truth’’). The ‘‘sampling error’’ is then

estimated from the difference between the reconstructed and

FIG. 1. Fractional coverage of the salinity observations and

mapping method at upper 2000m. (a) The 0–2000m averaged

fraction of the global ocean covered by salinity data (green) and

mappingmethod (red) when the global ocean is divided into 18 3 18
grids within each month. (b) Monthly mean fractional coverage for

salinity observations at different layers. (c) Monthly mean frac-

tional coverage for the mapping method at different layers.
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so-called truth fields. The data and methods involved in this

approach are described in section 2.

Based on our new reconstruction, we explore the global and

basin-scale salinity changes averaged over the top 2000m

(S2000) in section 3a compared with estimated sampling errors

to suggest a reliable reconstruction of basin integrated salinity

changes since 1960. The three-dimensional changes of salinity

as represented in these data are then investigated in section 3b,

including spatial patterns of SSS/S2000 trends since 1960 and

salinity trends for zonal–depth sections. To quantify the sa-

linity pattern amplification, an index is adopted in section 3c

to provide a new quantitative estimate of trends from 1960

to 2017 and then compared with previous study results in

section 3d. In section 3e, the drivers of observed salinity

changes are investigated in combination with CMIP5 simula-

tions. In section 3f, we quantify the observed global water cycle

pattern amplification. Conclusions and discussion on future

work and potential improvements are provided in section 4.

2. Data and methods

a. Salinity observations
In situ ocean salinity observations are sourced from the

World Ocean Database (WOD) downloaded in July 2018

(Boyer et al. 2018), with its quality flags being used to remove

spurious data. Data from all available instruments (i.e., Argo,

Bottle, CTD) are used in this study. Although salinities are

archived in units of Practical Salinity (PSS-78, or psu),

Absolute Salinity (SA; g kg21) is adopted in this study as

recommended in the Thermodynamic Equation of Seawater–

2010 (TEOS-10) (McDougall et al. 2012). For the creation of

gridded fields, all observations are first interpolated to 41

vertical standard levels from 1 to 2000m.

As was done for the earlier temperature reconstruction in

Cheng et al. (2017), the anomaly field is used because its spatial

decorrelation scale is much larger than for climatological mean

fields. Anomaly fields are obtained by subtracting a depth-

dependent monthly climatology using all observations from

1990–2010 (centered at around 2000). These anomalies are

averaged into a 18 3 18 grid and then input into the mapping

algorithm, which infills data gaps and provides a 3D gridded

field with complete spatial and temporal coverage. All data

between 1990 and 2010 were used in the construction of the

monthly climatology. The data were interpolated using the

same new mapping method that was used for the anomalies

(introduced in the next section).

The reconstruction is made separately for each month, al-

though observations within a certain time window are com-

bined to infill data gaps while accounting for the persistence

of salinity changes over time. The size of the temporal bins

(before and after) increases from 2 months at the surface to

9 months at 2000m.

b. Mapping method

The continuity and covariability of the ocean state across

spatial and temporal scales makes it possible to reconstruct the

ocean state with reasonable accuracy using relatively sparse

observations. A mapping method defines how the global map

FIG. 2. The 0–2000mmean salinity time series in the four ocean basins using different products from 1960 to 2017:

(a) Atlantic Ocean, (b) IndianOcean, (c) Pacific Ocean, and (d) SouthernOcean (708–308S). The products are EN4

(Good et al. 2013), Ishii (Ishii et al. 2003), ORAS4 (Balmaseda et al. 2013), ECCO (Forget et al. 2015), NCEI

(Boyer et al. 2005), SCRIPPS (Roemmich and Gilson 2009), SODA (Carton et al. 2018), and DW10 linear trend

(Durack and Wijffels 2010). BOA and SCRIPPS are Argo-based products, so they are only available after 2004.

ECCO is from 1993 to present. All time series are 12-month running means and relative to a 2005–15 baseline.
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of a variable is created from incomplete observations and how

the reconstructed field is smoothed. We follow the methodol-

ogy used previously to reconstruct ocean interior temperature

variations over the past few decades (Cheng et al. 2017) using

an Ensemble Optimal Interpolation (EnOI) approach with a

dynamic training ensemble provided by simulations of the

CMIP5 models [for details, see Cheng and Zhu (2016)]. Here,

we introduce the general concepts involved and outline mod-

ifications from our prior approach in its application to salin-

ity data.

The basic framework of the EnOI method is Eq. (1): the

analysis field (Xa) is a linear combination of a prior guess field

(Xb, or background field), and the monthly gridded average

in situ observations (as denoted by matrix y):

Xa 5Xb 1K(y–HXb) , (1)

where H is the transfer matrix from the analysis space to ob-

servation space, and the Kalman gain K is obtained from the

maximum likelihood method by minimizing the analysis error.

The Kalman gain is calculated by

K 5 PbHT(HPbHT 1R)
21

. (2)

The superscript T denotes the transpose operation; R is the

error covariance of the observations, and Pb is the error co-

variance of the background field. The reconstructed field (Xa)

is the infilled monthly salinity anomaly and is derived from the

mapping method applied to the grid-averaged salinity anom-

alies at each standard depth. The actual implementation

follows the algorithm of Cheng and Zhu (2016) and Sakov and

Oke (2008a,b), although with a somewhat modified approach,

as described below. The basic formula of Eq. (1) helps to ex-

plain the concept.

The covariance (Pb) is essential for propagating signals from

data-rich areas to data-sparse regions. Previous mapping

methods for ocean temperature and salinity use an empirically

derived parameterized Pb as an approximation, which is

always a distance-weighted Gaussian function, assuming iso-

tropic spatial correlation of the ocean variability (Ishii et al.

2003; Levitus et al. 2012; Good et al. 2013). This is an over-

simplified assumption, however, because the spatial covariance

should be flow-dependent and much more spatially complex

than a Gaussian fit. In fact, the structure cannot be explicitly

characterized by idealized functions. For a brief illustration,

Fig. 3 displays the zonal and meridional mean correlations of

monthly salinity changes for a climate model (here the

Goddard Institute for Space Studies GISS-E2-H model; other

models and reanalysis data yield similar results). It is apparent

that the spatial correlation scales vary widely by location.

Our modified approach therefore is to use a variety of cli-

mate models to construct a best guess for the covariance in

space and time of in situ observations. With the EnOI frame-

work,Xb is the ensemble mean of the CMIP5 models, and Pb is

calculated based on the model ensemble. Here we use 43 pre-

2005 CMIP5 historical (Hist) simulations along with 40 simu-

lations from 2006 to the present under RCP4.5 projections. The

models are listed in the Table S1 in the online supplemental

material. Data from 1995–2005 are used to construct model

FIG. 3. (a),(b),(e),(f) Zonal-mean and (c),(d),(g),(h) meridional-mean correlation as a function of distance for (a),(e),(c),(g) SSS and

(b),(f),(d),(h) S2000. The calculation is based on historical simulation for 1960–2017 (RCP4.5 for 2006–17) from theGoddard Institute for

Space Studies (GISS-E2-H), but using othermodels shows similar results. Themean seasonal cycle has been removedwhen calculating the

correlation. (e)–(h) Results after a linear trend is removed in each grid cell.
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climatology—centered at 2000 and consistent with observa-

tional anomalies. The window is slightly shorter than that for

the observational climatology because the model historical

simulations end in 2005 and there are fewer models available

for RCP4.5 than Hist.

Simulations from different models sample the range of

spatial covariance and the best solution is found under the

constraint of observations in the EnOI framework. Themodels

mainly provide the spatial covariance, while the model simu-

lated temporal evolution of salinity plays a negligible role in

the reconstruction. This can be confirmed by a test (Fig. 4),

using the observational anomalies, the reconstruction field

based on the present method, and CMIP5 model ensemble

mean. By inspection, it is clear that the reconstruction field is

very different from the prior guess, even in the regions with

large data gaps such as the southeast Pacific, South Atlantic,

and south Indian Oceans (Figs. 4b, d vs Fig. 4e, with a pattern

correlation of 20.01). This indicates that the so-called prior

guess does not impact our reconstruction in a significant

manner. In the following sections, the reconstruction accuracy

will be rigorously assessed by a ‘‘subsample test.’’

The key parameters for the application of this method are as

follows:

1) Localization strategy. During the analysis of a grid cell, the

mapping method uses the adjacent observations for the

reconstruction by utilizing the spatial covariance, but only

data within a certain spatial range are used. This strategy

(termed a ‘‘localization strategy’’) is commonly adopted to

avoid spurious remote correlations (Roemmich and Gilson

2009; Levitus et al. 2012; Good et al. 2013; Balmaseda et al.

2013; Forget et al. 2015; Ishii et al. 2017; Li et al. 2017). The

size of the range is defined by the influence radius, which is

mostly less than 88 in previous studies. Here we use a larger

influence radius of 258 from the sea surface down to 2000m,

consistent with the optimal approach found in our prior

temperature analysis (Cheng et al. 2017).

Using this larger influence radius allows us to leverage the large

spatial covariances. Figure 3 shows the zonal mean (meridional

mean) correlations at different latitudes (longitudes) as a

function of distance between any two grid points. On a global

average, the zonal correlations of SSS are up to ;0.3 for two

FIG. 4. Examples of the subsample test. (a) Observations and (b) reconstruction of the salinity field at 5m in July

2012. (c) The salinity anomaly field in July 2012 was subsampled according to the location of observations in July

1962. Approximately 25% of the grids were selected during the subsample process. (d) The reconstruction based

on these subsampled observations. (e) The ensemble mean of the CMIP5models in July 2012 at 5m depth, which

is used as the prior guess in the mapping. The color shows the average salinity anomaly in each 18 3 18 grid.
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grids at a distance of 258 in the tropics (108S–108N) and high

latitudes (708–408S, .608N) (Fig. 3a). The maximum zonal

mean correlation of S2000 can be as high as ;0.8 in the

Southern Ocean and ;0.6 in the tropics (Fig. 3b). The corre-

lations across latitude are much weaker than across longitude

(generally less than 0.2 at 108 distance for both SSS and S2000)

(Figs. 3c,d). This is a typical characteristic of ocean variability

(Zang and Wunsch 2001). Compared with SSS, S2000 reveals

much stronger remote covariance, for example, correlations

can reach ;0.6 even at 1208 in the Southern Ocean (Fig. 3b)

and Atlantic Ocean (Fig. 3d). This reveals the large coherence

of subsurface water mass anomalies associated with long-term

trends and multidecadal variability. Removing a linear-trend

from the model data results in slightly smaller zonal- and

meridional-mean correlations, especially for S2000 (Figs. 3e,f

vs Figs. 3a–d), but large spatial coherence persists. Further

decomposing the detrended data into interannual (,8 years)

and decadal time scales (.8 years) shows that decadal vari-

ability has much stronger spatial coherence than does inter-

annual variability, but remote correlations at and beyond 258
are evident for both (Fig. S1).

Employing climate models to determine the correlation

structure suggests the merit of a larger influencing radius than

used in previous studies and ensures near-global fractional

coverage (defined as the fraction of total ocean area obtained

by the field reconstruction method) (Fig. 1). It suggests

that.90% of the global ocean area at each layer for the upper

2000m can be analyzed by this method (the unanalyzed,10%

of the 18 3 18 boxes are mainly from the Arctic Ocean, which

does not impact the results in this study because the area is

small). This important aspect of the present analysis avoids the

‘‘conservative error,’’ whereby the analysis field is strongly

influenced by the prior guess, which occurs for most mapping

methods (Durack et al. 2014; Cheng et al. 2019), an issue that

will be discussed more later. Even though the larger radius

results in a strong spatial smoothing, it helps to bring more

adjacent observations in the analysis for a given grid cell than

using a smaller radius, ensuring that the large-scale pattern is

reliably reconstructed (as illustrated in Fig. 2).

2) The observation error variance (R) represents the error of

the observations, including both the error due to instru-

ment inaccuracy as well as the error caused by the need to

represent the spatial structure at monthly 18 (lateral) 3
1 m (depth) resolution from a limited number of obser-

vations. Here R is simply set to 0.01 consistently over the

global ocean, assuming the error is not correlated in

space. This simple assumption is made because there are

insufficient data to quantify the representativeness error

and the spatial correlation. As empirically identified by

the International Quality Controlled Ocean Database

(IQuOD) community (IQuoD 2018), the accuracy of

salinity measurements ranges from 0.002 to 0.08 pss-78

depending on instruments, and therefore we adopt a

value of 0.01.

We have tested the impact of this choice on the reconstruction

by using two other choices (0.005 and 0.02). These additional

analyses suggest a negligible sensitivity of the salinity time

series derived in this study. Rather the choice of R mainly

impacts the regional smoothness of the reconstructed fields and

not the patterns, global and basin-mean or integrated quanti-

ties or their temporal variability, which are the main foci of this

study. We expect to improve our estimate of R when more

salinity observations become available (e.g., more Argo data,

more data digitization, and data recovery work).

3) Iterative strategy. The application of a large influence radius

helps to ensure a high fractional coverage but also filters out

the smaller-scale signals (i.e., smaller than 258), resulting in a
smooth spatial pattern. Hence, three iterative scans are

performed successively using: 258, 88, and 48, to encompass

ocean variability across those spatial scales. This follows the

strategy adopted in our ocean temperature reconstructions

(Cheng et al. 2017).

4)The uncertainty of the reconstruction is defined as one

standard deviation (1s) of the ensemble members after

updates by the EnOI. This uncertainty mainly reflects the

impact of sampling, which is the major source of error. The

instrumental error is partly taken into account in the EnOI

framework, as observational error covariance, and is assumed

to be independent between any two grids. But potential

instrumental biases in some older salinity data are not taken

into account as they are seldom investigated in the current

literature (Gouretski and Jancke 2000).

c. Evaluation method
Here a ‘‘subsample test’’ is used to understand the capabil-

ities of the method by comparing themapped field from a data-

rich period to that reconstructed using a ‘‘resample’’ from that

period. This resample is generated by sampling the full field of

the data-rich period at the locations of the data-scarce period.

This procedure is possible because after 2007, the integrated

ocean observation system, including Argo and other observa-

tion networks, achieved near-global ocean data coverage for

the upper 2000m (Abraham et al. 2013; Riser et al. 2016),

providing an excellent base to test the mapping method. This

comprehensive and objective evaluation process is another key

advantage of the data product derived in this study.

Twenty-two Argo-period salinity fields, selected every

6 months from 2007 through 2017, are used as ‘‘truth.’’

However, because the monthly data during the Argo period do

not have global coverage at 18 3 18 and monthly resolution

(Fig. 1), the data within 22 to 2 months centered on each se-

lected month are averaged to construct each so-called truth

field. In this way, the fractional coverage of observations in

each truth field is at least .70%.

We subsample each truth, as defined above, using different

historical observation masks, selected every 30 months from

1960 to 2015 in both summer and winter. The nearest grid is

used if there is no data in the truth grid. If there are more than

two observations sharing the same truth, a perturbation to the

subsampled data is applied using a fixed variance of 0.01 (same

as value in R). Each subsampled field is then reconstructed by

the mapping method and compared with the corresponding

truth, with the difference defined as ‘‘sampling error.’’ We use

this sampling error to assess whether any trend is statistically

10362 JOURNAL OF CL IMATE VOLUME 33

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/33/23/10357/5014865/jclid200366.pdf by guest on 06 N
ovem

ber 2020



robust. To this end, we define a signal-to-noise ratio (SNR),

computed as the standard deviation (1s) of the salinity vari-

ability divided by 1s of the sampling error.

This approach is sometimes referred to as a ‘‘synthetic ob-

servations’’ method (Cheng and Zhu 2016; Dangendorf et al.

2017; Gruber et al. 2019), where model simulation, reanalysis,

or observational data with better spatial coverage are used to

construct synthetic sparsely sampled observational fields. But

as model or reanalysis data are limited by their resolution and

systematic errors, their representativeness as the truth in the

real world is limited. Here we use in situ Argo-period obser-

vations, taking advantage of their near-global ocean coverage

and representativeness of the real ocean variability at all spa-

tial and temporal scales, and estimates of instrumental errors.

An example of subsample test (Fig. 4) shows the subsampled

fields and their reconstructions according to the observation

locations in July 1962, compared with the corresponding truth

(salinity anomalies in July 2012). The large-scale salinity

anomaly pattern in July 2012 can be well reconstructed, al-

though only ;25% of irregularly distributed observations are

used (most of the data are along the coastal regions in the

northwest Pacific, northwest Atlantic, and north Indian

Oceans; Fig. 4c). The well-reproduced large-scale patterns in

the reconstructed fields include the west–east contrasting di-

pole in the Indian Ocean, freshening in the western Pacific ex-

tending into the northwest/southwest Pacific, positive

anomalies in the central tropical Pacific, and freshening in the

tropical and midlatitude Atlantic (Fig. 4b vs Fig. 4d). The spatial

correlations between the five reconstruction fields and the re-

constructed truth are 0.54. Other sampling time periods (with the

exception of July 1962) result in similar spatial correlations

ranging from 0.40 to 0.95. There are some noteworthy uncer-

tainties regarding the reconstructed fields in data-sparse regions.

For example, in July 1962, there are few observations in the

eastern Pacific Ocean, creating larger errors in the reconstruction

(Fig. 4b vs Fig. 4d). Because of sparse data, some degree of re-

construction error is unavoidable. The key questions are how large

the errors are and how they impact the signals of interest (i.e.,

large-scale patterns, global and basinwide averages). These ques-

tions are tested in a quantitative way in the following sections.

d. Independent ocean products
Several available data products are used to test our results

and demonstrate the limitations of traditionalmappingmethods.

We use six observational gridded products including EN4

from the Met Office (United Kingdom; Good et al. 2013;

EN.4.2.1.g10), Ishii from Japan (Ishii et al. 2003, 2017),

National Centers for Environmental Information (NCEI;

United States; Boyer et al. 2005; Levitus et al. 2012), the linear

trend product spanning from 1950 to 2000 for 0–2000m from

DW10, and two Argo gridded products, the Barnes objective

analysis (BOA) from China (Li et al. 2017) and SCRIPPS

(from the Scripps Institution of Oceanography, in the United

States) (Roemmich and Gilson 2009). There are more Argo

products available (https://argo.ucsd.edu/data/argo-data-products/),

but as the most-used datasets offer similar depictions of tem-

perature and salinity changes (Trenberth et al. 2016; Wang

et al. 2017a,b) only two are chosen here.

Three other widely used ocean reanalysis products, which

constrain numerical models with observations, are used as well:

Ocean Reanalysis System 4 (ORAS4) (Balmaseda et al. 2013),

Estimating the Circulation and Climate of the Ocean version 4

release 3 (ECCO v4.3) (Forget et al. 2015), and Simple Ocean

Data Assimilation (SODA) (Carton et al. 2018). Throughout

this study, the reanalysis products are distinguished from purely

observational products.

These products cover different time periods and have dif-

ferent spatial and temporal resolution (Table 1). Before anal-

ysis, all data were interpolated to the IAP spatial grid and

anomaly fields were used relative to their own monthly cli-

matology based on the data from 2005 through 2017. All have

been used extensively in the literature. For example, the recent

Intergovernmental Panel on Climate Change (IPCC) special

report for the ocean and cryosphere uses EN4 and SODA

(Bindoff et al. 2019). Zika et al. (2018) use EN4 and NCEI

products while Skliris et al. (2016) use EN4 and Ishii data.

Vinogradova and Ponte (2017) use ECCO data. Many inves-

tigations into the mechanisms of salinity changes use ECCO,

SODA, and ORAS reanalyses, which are comprehensively

summarized in Yu et al. (2020). Therefore, a brief intercom-

parison is worthwhile.

e. CMIP5 models
We employ CMIP5 model results from the historical simu-

lations where all forcings are considered (1960–2005; Hist) and

results from the ‘‘natural’’ simulations where only the changes

in radiative forcing caused by volcanic eruptions and changes

to solar irradiance (Nat) are considered. We also use results

from future projection simulations under representative con-

centration pathway (RCP) 2.6, 4.5, and 8.5 scenarios (Taylor

et al. 2012). A list of models used is in Table S1. We employ a

total of 16 models for Nat, 43 models for Hist, and 32 models

for RCP2.6, 40 for RCP4.5, and 36 for RCP8.5 projections.

Throughout this study, the model uncertainty is quantified by

one standard deviation (1s) of the ensemble members.

These model simulations are used in three ways. First, in the

salinity mapping where data from all Hist simulations (43)

within 1960–2005 and from the RCP4.5 (40) projections within

2006–17 are used in the EnOI framework. Second, to deter-

mine the emergence of an anthropogenic signal in the re-

constructed salinity trends by comparing the Hist (43) and Nat

(16) simulations. And third, to analyze the relationship be-

tween the changes in the ocean interior salinity contrasts with

the changes in the E 2 P contrasts. Only simulation results

from those 21 models that provided data for all projections

(Table S1) were used.

‘‘Model drift’’ exists in climate models due to the errors in

model or incomplete model spinup (SenGupta et al. 2013). We

show results that do not apply any de-drifting process for the

following reasons. 1) The metrics in this study are highly in-

sensitive to drift because model drift is largely cancelled out by

computing the differences of salinity between different oceanic

regions. This is confirmed by our tests. 2) The common de-

drifting process is applied for global metrics rather than re-

gional fields, and the regional evolution of model drift is poorly

known. 3) The model drift applies mainly in the deep ocean
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below 2000m, but our analysis focuses on the upper ocean. 4)

A previous study (Durack et al. 2012) has confirmed that de-

drifting does not impact the salinity analyses near the sea

surface. 5) By not applying a drift correction more models can

be included in the analyses, as preindustrial runs are not

available for all models. 6) Current quantification of model

drift correction is only an approximation, which could pose

additional errors to the results. Thus, there is a trade-off be-

tween model availability of preindustrial runs and model

numbers. Tests of most of the model results with and without

applying a drift correction process, using a ‘‘quadratic’’ poly-

nomial regression in each grid box subtracted from the Hist,

Nat, and RCP simulations show insignificant differences. Some

figures after drift correction are provided in the supplement.

f. Global mean land/ocean surface data
To quantify the global mean surface temperature (GMST)

change for 1960–2017, we use (i) combined land surface air and

sea surface water temperature anomalies from the National

Aeronautics and Space Administration (NASA) (GISTEMP

2019), (ii) Berkley Earth (Rohde et al. 2013), (iii) Japan

Meteorological Agency (JMA) data (Ishii et al. 2005), and (iv)

the Cowtan–Way dataset (Cowtan and Way 2013). The linear

trend is first calculated for 1960–2017 and then the total change

is obtained by multiplying that rate by 58 years. The mean total

warming among the four datasets is 0.88K with a 1s range

of 0.11K.

g. Trend calculation
Anordinary least squares (OLS) linear fit is used to calculate

the linear trends. The error bars (1s confidence level) are

calculated taking account of the reduction of the degrees of

freedom due to the temporal correlation of the residuals.

Following Foster and Rahmstorf (2011), the noise was treated

as an autoregressivemoving averagemodel: ARMA(1,1) when

both lag-1 and lag-2 autocorrelations are positive; or a first-

order autoregressive model, AR(1) is used when lag-1 auto-

correlation is positive and lag-2 autocorrelation is negative.

Simple standard error derived from OLS is used when lag-1

autocorrelation is negative (white noise).

3. Results

a. Ocean subsurface salinity changes in major basins
The reconstructed salinity averaged over the top 2000m

(i.e., S2000; Fig. 5a) decreased between 1960 and 2017 at a

linear rate of 3.8 6 2.6 3 1023 g kg21 century21 (1s error

range). It is tempting to associate this global mean freshening

to that expected from the melting of land ice. Globally, Earth’s

gravity satellite [Gravity Recovery and Climate Experiment

(GRACE)] observed a total ocean mass increase of 2.5 6
0.4mmyr21 since 2005, implying a reduction in ocean salinity

of about 4.0 6 0.7 3 1023 g kg21 century21 for the upper

2000m assuming the freshwaters are all input there (Tapley

et al. 2019). But the large decadal salinity variations together

with the sampling error (within 23 to 1 3 1023 g kg21 since

1960, SNR, 2) suggest that a global freshening due to land ice

loss cannot yet be definitively identified, and global S2000

change could also be related to freshwater exchange between

land and ocean, upper ocean, and deep ocean, or to instru-

mental errors.

Pronounced decadal/multidecadal trends emerge in S2000

for individual ocean basins (Figs. 5b–f and 6). S2000 decreased

steadily in the Pacific basin after 1960, but sharply increased in

the Atlantic basin (mostly since the 1990s) (Figs. 5b,d). These

decadal variations are robust and significantly larger than the

sampling uncertainty despite the evolution of the observation

system (SNR � 2) (Fig. 5g) (Bryden et al. 1996; Curry et al.

2003). The increased salinity contrast between the two basins

(Figs. 5b,d) has been noted before and attributed to an in-

creased interbasin transport of water vapor from the Atlantic

to the Pacific Ocean (Curry et al. 2003; Reagan et al. 2018).

S2000 in the Atlantic Ocean shows larger decadal fluctuations

than in the Pacific Ocean, especially in the North Atlantic, in

phase with Atlantic multidecadal oscillation (AMO) (Reverdin

et al. 2019; Skliris et al. 2020).

In the Indian Ocean, S2000 increased in the north (Fig. 5c),

where the climatological salinity is high (Fig. 6b) and decreased

in the south (Fig. 5e) where the climatological salinity is low

(Fig. 6b). These opposing trends arise mainly from changes

before ;1985, and are relatively robust, even though changes

in the north Indian Ocean are more reliable (SNR . 2 since

1960) than in the south (SNR; 1 before 2005), owing to better

sampling. The net salinity increase in the north, particularly in

the Arabian Sea, is probably due to a trend toward stronger

saline overflow from the Red Sea and Persian Gulf (DW10). In

contrast, the freshening trend in the southern Indian Ocean is

most likely a result of the advection of low salinity water from

regions of large precipitation in the west PacificOcean and east

Indian Ocean due to a warm ocean surface and frequent at-

mospheric deep convection (Cravatte et al. 2009; Du et al. 2015).

In all major basins, the SNR for interannual scale variability

is less than 3 after 1960 and less robust compared with decadal/

multidecadal changes. However, the North Indian andAtlantic

Oceans show larger SNR than other basins, ranging from 1 to 3

after 1960 (.2 after 2005).

As the rest of this study focuses more on the spatial patterns

of salinity changes, the basin-mean time series for different

layers are in the supplement. In Figs. S2–S5, the basin-mean

salinity changes for 0–500, 500–1000, 1000–1500, and 1500–

2000 m separately compared to the estimated sampling

uncertainty confirm that sampling uncertainty does not

significantly impact our reconstruction for most of the

ocean layers above 2000 m depth.

b. Spatial patterns of long-term salinity changes
The map of the S2000 trends over the 58 years between 1960

and 2017 (Fig. 6d) reveals even more spatial complexity of the

trends, most of which seem robust as they exceed the estimated

sampling error (Figs. 7 and 8). Key features include a fresh-

ening trend in the high-latitude North Atlantic that contrasts

with positive trends elsewhere in the basin. The freshening

trend in the Pacific is larger in the tropics and mid latitudes,

whereas in the subtropical latitudes and especially the centers

of the subtropical gyres, weak salinification exists (Figs. 6d,e).

The map of the S2000 trend is spatially correlated (spatial
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correlation:10.58) with themap of the SSS trends, highlighting

the deep-reaching nature of the ocean salinity trends (Fig. 6c vs

Fig. 6d). The twomaps also have some remarkable differences,

most notably a much broader band of salinification of the

subtropical gyres at the surface, not seen in the depth-

integrated trends. These differences likely result from the

formation of anomalies near the surface and their advection

and mixing into the ocean interior (Fig. 6e) (Durack and

Wijffels 2010; Yu 2011; Terray et al. 2012).

Trends toward lower surface salinities in the tropics in the

Pacific and Indian Oceans, where P exceeds E, form a tropical

freshening band near the surface (Figs. 6c,e) and a freshening

‘‘bowl’’ in the upper 100m (Fig. 6e). Salinification of waters

near the surface in the subtropical gyre regions (Fig. 6c) sub-

duct and create a high salinity ‘‘dome’’ in the upper 300m

within 308S–308N in each ocean basin (Fig. 6e) (Helm et al. 2010;

Durack and Wijffels 2010). The near-surface salinification is

caused by both anomalous surface freshwater fluxes and

FIG. 5. Evolution of global and basin-scale 0–2000m mean salinity and estimated sampling uncertainty. The

0–2000m averaged salinity anomaly relative to 2008–17 for monthly time series (gray shading shows 1s confidence

interval, calculated by one standard deviation of the ensemble members) and for smoothed time series after ap-

plying a locally weighted scatterplot smoothing (LOWESS) with a span width of 240 months. (a) global,

(b) Atlantic, (c) North Indian, (d) Pacific, (e) south Indian, and (f) Southern Oceans. The sampling errors use

different truths (green dots), withmean and 1s range. (g),(h) The signal-to-noise ratio (SNR) for salinity change for

decadal/multidecadal (.7 yr) and interannual scales (,7 yr), respectively. SNR , 1 and , 2 are shaded.
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warming-induced poleward isopycnal movements (Durack

et al. 2010; Zika et al. 2018). Freshening of the low-salinity

intermediate waters at latitudes poleward of 308 that then sink

in the Southern Ocean and North Pacific/Atlantic creates a

broad freshening from 500 to 2000m in each basin (Figs. 6d,e).

These changes indicate a close connection between high-

latitude near-surface changes with low-latitude subsurface

anomalies, where subpolar and subtropical surface anomalies

could penetrate equatorward along isopycnals (Durack et al.

2010; Helm et al. 2010). One exception is a middepth salinifi-

cation trend in the Atlantic, most likely caused by an enhanced

intrusion of the saline Mediterranean OutflowWater (MOW),

which extends from the Mediterranean Sea (where E � P) at

;358N into the 800–1500m layer in the Atlantic Ocean

(Fig. 6e) (Durack et al. 2010; Skliris et al. 2014). In the

SouthernOcean, there is a broad freshening in the upper 200m

and a salinity increase below 200m, across basins, primarily

driven by a surface flux associated with ocean advection and

perhaps enhanced sea ice melt, while ice-sheet melt plays a

much smaller role (Haumann et al. 2016; Swart et al. 2018). The

vertically opposing changes compensate and result in a less-

identifiable net S2000 change compared to sampling error (Fig. 6f).

FIG. 6. Spatial pattern of the salinity climatology and long-term trend from observations. (a),(b) SSS and S2000

salinity climatology 1960–2017. (c),(d) Linear trend of SSS and S2000, for 1960 to 2017; the regionswithout stippling

indicate the signals outside the 1s confidence level. (e) Ocean salinity trends for 1960–2017 from sea surface to

2000m as the zonal mean sections in each ocean basin organized around the Southern Ocean in the center. Gray

contours show the climatological mean salinity, with intervals of 0.2 g kg21. The thick black contour in all panels

shows the global median of the climatological salinity for SSS in (a) and (c) and S2000 in (b), (d), and (e).
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Next, we consider the geographical distributions of the

surface and the 0–2000m mean sampling errors and their

trends since 1960, to evaluate the robustness of the signals

detected above. For SSS, no significant bias exists over the

global ocean (Fig. 7a). Note that the magnitude of the local

18 3 18 mean errors is larger than the global or basin salinity

means (shown in Fig. 5), because the regional errors/noise tend

to cancel when taking an average over a large area. Also, the

trends due to the change of sampling over time show much

weaker and distinctive patterns (Fig. 7c, mostly less than

0.1 g kg21 century21) compared with the observational trends

(Fig. 6c), indicating no significant local spurious trends.

For S2000, small systematic negative errors exist in the

midlatitudes of the Southern Hemisphere and north Indian

Ocean (Fig. 7b) and also in the basin means below 500m

(Figs. S2–S5c–f). This negative sampling bias is probably

FIG. 7. Geographical distribution of sampling error. (a),(b) Mean and (c),(d) linear trend of the sampling error

(left) at sea surface (to be compared with SSS) and (right) for 0–2000m mean (to be compared with S2000) at each

18 3 18 grid.

FIG. 8. Zonal mean trend of the mean sampling error for 1960–2017 from sea surface to 2000m, for the (a) Pacific

Ocean, (b) Atlantic Ocean, and (c) Indian Ocean. The nonstippled regions show the trend sourced from sampling

error is outside the 1s confidence level. The color bar is as in Fig. 2e.
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related to the errors in the CMIP5 models used to obtain the

spatial correlation structures. Sampling error changes over

time and induces a weak positive trend in these locations

(Fig. 7d). However, this time-variable bias (mostly less than

0.01 g kg21 century21) is much smaller than the observed sa-

linity trend identified in Fig. 6d. Thus, the small spurious trend

identified here does not impact the results in this study. Its

spatial pattern is also distinguishable from the long-term sa-

linity trends, suggesting the robustness of the identified salinity

pattern. Nevertheless, care should be taken if salinity changes

are investigated for only a small region, especially in the mid-

to high latitudes in the Southern Hemisphere.

For zonal–depth sections, the sampling error reveals a very

small and negligible error for the long-term trend in all three

basins (Fig. 8 vs Fig. 6e). There is a small spurious positive

(salty) bias for the long-term trends from 300 to 1000m within

208–408S in all three ocean basins (,0.04 g kg21 century21;

Fig. 8). However, the reconstructed long-term salinity trends

(Fig. 6e) are always much larger than this error. For example,

at the same location, the Pacific has a strong freshening trend

of .0.10 g kg21 century21 above 1000m (Fig. 6e), and the

Atlantic Ocean has a strong salinification trend for the upper

600m (.0.10 g kg21 century21) (Fig. 6e). In the North Atlantic

Ocean, the salinification trend gets weaker below 600m (0.02–

0.04 g kg21 century21) but extends to 1200m into the lower

latitudes and Southern Hemisphere; such a structure makes

physical sense and is related to Mediterranean Sea outflows

(Fig. 6e) (Durack et al. 2010). The pattern is distinctive from

the sampling error. An additional small distinguishable nega-

tive error occurs at 208S–208N in all basins in the upper 200m

(,20.02 g kg21 century21; Fig. 8 vs Fig. 6e). Therefore, this

test indicates an insignificant impact of sampling error on the

vertical–zonal salinity trend diagnosed by the new analysis.

The climate-related patterns (Fig. 6) are confirmed to be reli-

able and not due to sampling errors.

In summary, with a carefully designed evaluation process,

the results substantially strengthen and refine the well-

established picture of long-term salinity change structures

(Boyer et al. 2005; DW10; Skliris et al. 2014). Themain concept

is that the surface amplification patterns are subducted via

normal gyre ventilation [see the Fifth Assessment Report of

the IPCC (IPCCAR5) (Rhein et al. 2013) and the recent ocean

and cryosphere special report (IPCC 2019)], leading to broad

freshening of the intermediate waters in all basins from 300 to

2000m within 408S–408N (except MOW-induced salinification

within 800–1500m in the Atlantic Ocean), and salinification in

the subtropical gyres. Moreover, the new product contains mostly

insignificant sampling errors, and is therefore useful for the

quantification of ocean subsurface salinity changes in the upper

2000m since 1960, especially for decadal and multidecadal scales.

c. Quantification of salinity pattern amplification
Overall, our new ocean salinity reconstruction confirms,

with much higher confidence, the demonstrated ‘‘fresh gets

fresher, salty gets saltier’’ pattern. That is, the trend from 1960

to 2017 has amplified the mean ocean salinity patterns. To

capture this amplification change, we apply an index to our new

observational analysis, named the Salinity Contrast (SC) index.

The SC is defined as the difference between the salinity aver-

aged over high-salinity (VHigh, where salinity is higher than a

climatological global median, Sclim) and low-salinity (VLow,

where salinity is below Sclim) regions. It is calculated each

month over the three-dimensional (x, y, z) ocean salinity field:

SC(t)5

ððð
VHigh

S (x, y, z, t) dV

ððð
VHigh

dV

2

ððð
VLow

S (x, y, z, t) dV

ððð
VLow

dV

, (3)

where x, y, and z are the three dimensions of latitude, longi-

tude, and depth, respectively. The terms Sclim, VHigh, and Vlow

are all determined on the basis of the climatological salinity

field during 1960–2017 (Fig. 9). The 1960–2017 climatology is a

FIG. 9. Frequency distribution of salinity in (top) 0–2000m

global ocean volume and (bottom) a 2D plane at the sea surface

(SSS) from observational climatology. The x axis is the salinity with

an interval of 0.0002 g kg21. The frequency on the y axis is defined

as the number of grid cells (weighted by the fraction of the grid area

against global ocean area) with mean salinity falling into each sa-

linity interval in the x axis. For S2000m, each 0–2000m salinity

profile in each grid box was first interpolated into 1-m-interval depths, so

the statistic was done for 3D grid cells (each cell with a size of 18 3 18
horizontally and 1m vertically). The median, 25th percentile, and 75th

percentile are shown in orange. In addition, the median salinity ,25th

percentile and.75thpercentile arealsoprovided inblue.Thosenumbers

were used in the calculation of salinity contrast metrics.
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simple average of the reconstructed gridded fields within this

period. This amplification index can be calculated for any

ocean volume, either over the sea surface alone (termed as

SC0) or over the volume, from the surface down to any depth

(termed SC2000 for 0–2000m volume, SC1000 for 0–1000m

volume, etc.). This index can also be calculated for different

percentiles, such as SC2000-q, where VHigh and Vlow are de-

fined as,25th- and.75th-quartile regions (Fig. 9). It can also

be extended to potential density coordinates rather than z

coordinates. We will focus mainly on SC2000 and SC0 for

clarity in this study but also provide SC1000 and SC2000-q

results in Table 1 and the online supplement.

A constant Sclim assumes that the global median salinity does

not change significantly over time, an assumption supported by

Fig. 5 and IPCCAR5 (Rhein et al. 2013). Most CMIP5 models

show a very small global salinity decrease of;1026 g kg21 yr21,

although they do not have interactive ice sheets. A test using

the time-variable Sclim calculated for each month shows less

than 5% difference in the SC2000 trend, but fixed VHigh and

Vlow have considerable merit because it is easier to calculate

SC2000. A similar index was used in IPCC AR5 but for SSS

only (corresponding to SC0 in this study). A physical motiva-

tion for SC is provided by Zika et al. (2015), who found a linear

relationship between increases in the mean deviation of full

depth ocean salinity and water cycle amplification and that it is

invariant to changes in ocean circulation. The two metrics, SC

and mean deviation, are mathematically equal when the mean

and median of Sclim are equal.

SC2000 increased substantially from 1960 to 2017, with a

highly significant linear trend of 0.0286 0.002 g kg21 century21

(1s error bar) that is not impacted by sampling error (Fig. 10a,

Table 1). The SNR for SC2000 changes on decadal/multi-

decadal scales is ;6 before 2005 and ;10 after 2005, larger

than any of the global and basin means (Fig. 10a vs Fig. 5),

making SC2000 a very robust metric of ocean salinity changes.

In absolute terms, the contrast between the low and high sa-

linity regions increased over these 58 years by ;0.016 g kg21.

This represents a total change of 5.26% 6 0.4% in the mean

contrast (Fig. 10a, Table 1). After 1991, the rate of increase

accelerated, with a trend (0.0356 0.004 g kg21 century21) that

is twice that of the 1960–90 period (0.019 6 0.006 g kg21 cen-

tury21). Correspondingly, 2/3 of the total SC2000 increase

since 1960 occurs after 1991 (3.3%6 0.4% from 1991 to 2017 vs

1.9% 6 0.6% from 1960 to 1990).

The surface ocean contrast between high and low salinity

regions (i.e., SC0; Fig. 10b, Table 1) also increased with a sta-

tistically significant trend (0.179 6 0.014 g kg21 century21; a

total of 7.5% 6 0.9% increase of mean SSS contrast within

1960–2017), confirming findings of the IPCC AR5 for 1970–

2010. The SNR for SC0 is 2–4 before 2005 and 6–8 after 2005 on

decadal/multidecadal scales, about half that of SC2000, indi-

cating less reliability of this surfacemetric. Again, the sampling

error gets smaller after 2005 with the Argo network.

The SC0 trend is also more strongly affected by short-term

fluctuations (i.e., interannual variability) (Figs. 10a,b) than

SC2000, as expected from the direct exposure to fluctuations in

E and P. This difference is well illustrated by the emergence of

long-term trends with respect to the noise, represented by the

standard deviation of the year-to-year fluctuations. Thus, it

takes;11 years for the SC2000 signal to emerge from the noise

(when the signal is 2 times larger than noise, at 95% confidence

level) but twice as long (;24 years) for the SC0 signal to

emerge. Hence the integrated subsurface metric is a more ro-

bust metric of change.

The SSS pattern intensification is stronger (7.5%6 0.9% for

SC0) than subsurface changes (5.2%6 0.4% for SC2000, 5.4%6
0.6% for SC1000, and 3.1%6 0.3% for SC2000-q; Table 1) for

the 1960–2017 period, probably because this is a transient

system response with near surface waters being in close equi-

librium with the current warmer atmosphere and deep waters

in equilibrium with the past cooler atmosphere (Zika et al.

2018). Therefore, the surface salinity pattern amplification is

exacerbated by ocean warming and ice melt (Zika et al. 2018).

d. A comparison with other available products
There is a large spread in previous estimates of SSS and

subsurface salinity pattern amplification, which challenges the

reliability of previous estimates (e.g., Durack et al. 2012; Skliris

et al. 2016; Vinogradova and Ponte 2017; Zika et al. 2018).

FIG. 10. Salinity-contrast time series from 1960 to 2017 (a) at the

upper 2000m and (b) at the surface. Monthly anomaly time series

and its 1s and 2s error bars relative to a 2008–17 baseline. The

inset box shows the SNR for salinity change on decadal/multi-

decadal (.7 years; solid line) and interannual scales (,7 years;

dashed line). SNR , 2 are shaded. Green dots represent the

sampling errors corresponding to 22 different ‘‘truth’’ fields, ac-

companied withmean as lines and the 1s error bars. The dark black

line is the time series after applying a LOWESS with a span width

of 240 months.
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Here we first analyze salinity time series from different prod-

ucts to gain more insight into the data uncertainty (Fig. 2;

S2000 in four major ocean basins). Some products have dra-

matic shifts around 2005 that are unreasonably large and im-

pact trends, for example, in the Atlantic Ocean (Fig. 2a; EN4,

Ishii, and SODA), Southern Ocean (Fig. 2d, EN4, SODA,

NCEI, and ECCO), and Pacific Ocean (Fig. 2c; SODA and

ORAS4). ORAS4 also reveals a large regime shift around

1993, associated with the inclusion of altimetry data. DW10

show a much stronger long-term increasing trend in the

Atlantic Ocean and downward trend in the Southern Ocean

than all other products, which could explain why a stronger

estimate of SSS pattern amplification was obtained using

DW10 data compared with other products (Durack et al. 2012;

Skliris et al. 2016; Zika et al. 2018). The difference between

ECCO data and other products explains why Vinogradova and

Ponte (2017) found a large negative estimate on the salinity

pattern amplification in the North Atlantic Ocean. The fluc-

tuations in SODA data are much larger than other data in all

ocean basins and considered untrustworthy.

For SC2000 and SC0 time series, which are more relevant to

the salinity pattern changes, these products are quite consistent

during the data-rich Argo period after 2005, but diverge in

prior decades (Fig. 11). For SC2000, the NCEI estimate is

closest to our new product, probably because it is a pentadal

product. EN4/SODA shows a very large spurious upward shift

during 2000–05, resulting in a much stronger SC2000 increase

than other data. Among all these products, the new recon-

struction shows much better continuity during the periods of

observing-system change such as 1993 (altimetry) and 2005 or

so (Argo), which is more physically tenable. The spread of the

linear rates of SC2000 is from 0.015 to 0.042 g kg21 century21

(0.065 to 0.247 g kg21 century21 for S0), equivalent to an am-

plification of 2.9%–7.8% (2.5%–9.8%) (Table 1; SODA is

excluded here). This large spread is consistent with previous

estimates of surface and full-depth salinity pattern amplifica-

tion, for example 5.0%–8.0% across Zika et al. (2018) and

Durack et al. (2012) for surface salinity change since the 1950s

(Table 2).

Most prior methods used relatively small influence radii

(,108), which leads to a low fractional areal coverage of much

less than 90%. Consequently, the reconstructions tend to be

biased toward their prior guess (‘‘no data, no signal’’ defi-

ciency) (Cheng and Zhu 2014; Durack et al. 2014; Palmer et al.

2015; Meyssignac et al. 2019). For example, the difference of

the salinity field between August 1971 and August 1991 at

1500m depth for EN4, Ishii, and the new data (Fig. 12) should

be smaller in the Pacific Ocean than in the Atlantic Ocean due

to the slower water mass formation in the Pacific Ocean as a

physical benchmark. However, first, Ishii and EN4 data are

close to zero in the southeast Pacific, where there are large data

gaps in both years (Fig. 12) indicating that the reconstruction is

closer to their prior guess. Good et al. (2013) explicitly state,

regarding EN4, that it is ‘‘important to note that the analyses

will relax to climatology in the absence of any observations’’

(p. 6707). Second, EN4 data show spotty salinity anomalies in

the PacificOcean (Fig. 12) at the locations where there are data

for only one year. The magnitude of the Pacific salinity anomalies

is as large as in the Atlantic Ocean, which is most likely un-

physical and at odds with Ishii and the present data. By con-

trast, the data of this study show greater uniformity in the

Pacific Ocean, which is more physically correct.

In summary, our investigations suggest that the errors in

traditional datasets are mainly responsible for the large spread

in previous quantifications of the salinity pattern amplification,

and our new product is more reliable for examining long-term

salinity changes.

e. Attribution of the salinity change to human influence
Are these multidecadal trends in the salinity contrast driven

by natural (volcanic, solar, and internal variability in the cli-

mate system) or human (greenhouse gases, aerosols, and land

use) radiative forcing changes? We use coupled climate model

simulations from CMIP5 (Taylor et al. 2012) to address this

question, by contrasting the historical simulations (CMIP5-

Hist) that included all forcings, including the anthropogenic

contributions, with the natural-forcing only simulations

(CMIP5-Nat). Only the CMIP5-Hist simulations are able to

capture the observed trends; that is, they reveal that the sali-

nification and freshening trends occur in the saltier and fresher

FIG. 11. Annual mean time series of (a) SC2000 and (b) SC0 for

different products. The products include EN4 (Good et al. 2013),

Ishii (Ishii et al. 2003), ORAS4 (Balmaseda et al. 2013), ECCO

(Forget et al. 2015), BOA (Li et al. 2017), NCEI (Boyer et al. 2005),

SCRIPPS (Roemmich and Gilson 2009), and SODA (Carton et al.

2018). BOA and SCRIPPS are Argo-based products, so they are

only available after 2004. ECCO is from 1993 to the present. The

monthly (together with the 1s and 2s uncertainty ranges) and

annual time series from this study are also shown. All time series

are relative to a 2008–17 baseline.
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regions, respectively (Figs. 13 and 14 vs Fig. 6). In contrast,

CMIP5-Nat show only weak trends, with a distinctly different

spatial pattern (Figs. 13 and 14). Correcting model drift results

in negligible impacts on the spatial patterns (see Fig. S6).

Although broadly consistent with observations, CMIP5-Hist

shows some regional biases (Fig. 13a vs Fig. 6e), including

much weaker salinification in the subtropical gyres of the

Pacific Ocean and a freshening bias in the north Indian Ocean.

These biases mainly occur near the surface, implying that

surface forcing (E2 P) biases in models might be responsible.

Hence the observed amplification of the salinity pattern cannot

be explained in terms of only natural variability and changes in

natural forcing.

Using global metrics, the CMIP5-Hist results show a robust

increase in SC2000 and SC0, with the median from all indi-

vidual model trends of 0.021 6 0.014 g kg21 century21

(SC2000; 3.9% 6 2.6%) and 0.126 6 0.066 g kg21 century21

(SC0; 5.6% 6 2.9%), where the error bar is the 1s spread

across all models (Fig. 15). The models have slightly weaker

trends than the observational estimates, but are consistent,

given the uncertainty range. In contrast, for CMIP5-Nat, there

are no statistically significant trends (Fig. 15). CMIP5-Hist also

suggests a rate increase of SC2000 by 1.5 times after 1991,

consistent with observations. For both SC0 and SC2000, the

median trends of both CMIP5-Hist and current results exceed

the 2s natural range (.95% confidence level) (Figs. 15c,d),

which suggests that since 1960 the anthropogenic signal in

ocean subsurface salinity has emerged from the natural back-

ground variability. Although several models show large ad-

justments with corrections for model drift, the model ensemble

median is nearly identical to the results without corrections for

both Hist and Nat (Fig. S7).

Six out of seven independent salinity reconstruction prod-

ucts show a SC2000 (five for SC0) increase in the past decades

that exceeds the 2s natural range (Figs. 15c,d, Fig. S8 for

SC1000 and SC2000-q). This reinforces our results and con-

firms that the new subsurface indices are a particularly

robust and attributable metric of the ‘‘human fingerprint’’ of

the climate system, extending previous results (Barnett et al.

2001; Curry et al. 2003; Pierce et al. 2012; Stott et al. 2008).

TABLE 2. A summary of the observational estimates on salinity pattern amplification and water cycle intensification.

Salinity data

Method to derive

E 2 P change from

salinity data Time period

Salinity pattern

amplification Water cycle intensification

This study This study Regression between

salinity contrast

and E2 P

change in CMIP5

model ensemble

mean

1960–2017 7.5% 6 0.9% (SC0) 2.6% 6 2.0%K21 (SC0)

5.2% 6 0.4%

(SC2000)

2.6% 6 4.4%K21 (SC2000)

3.1% 6 0.3%

(SC2000-q)

3.2% 6 3.4%K21 (SC2000-q)

5.4% 6 0.6%

(SC1000)

2.8% 6 3.0%K21 (SC1000)

Durack et al. (2012)

SSS zonal (SSSz)

mean pattern

amplification

Linear trend

data from

Durack

et al. (2010)

Regression between

zonal mean SSS

change and E 2 P

change in CMIP5

models, weighted

by the pattern

correlation

1950–2000 8% (SSSz) 8% 6 5%K21

Skliris et al. (2014)

SSS zonal mean

pattern

amplification

Linear trend

data from

Durack

et al. (2010)

Similar to Durack

et al. (2012)

1950–2010 5.3% (SSSz) 4.7%K21

Skliris et al. (2016)

Full-depth salinity

pattern

amplification

Ishii, EN4 and

DW10 data

Water mass

transformation

theory

1950–2010 — 3.0% 6 1.6%K21

Zika et al. (2018)

SSS pattern

amplification

EN4 gridded

data

Water mass

transformation

theory

1957–2016 5.0% 6 1.1% (SSS) 3.6% 6 2.1%K21

Zika et al. (2018)

SSS pattern

amplification

Boyer et al.

(2005) data

Water mass

transformation

theory

1955–98 5.4% (SSS) —

Hosoda et al. (2009)

SSS pattern

amplification

Argo and other

hydrological

data

Surface salinity

budget equation

2003–07 vs 1960–89 5.5% (SSS) 3.7% 6 4.6%

10372 JOURNAL OF CL IMATE VOLUME 33

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/33/23/10357/5014865/jclid200366.pdf by guest on 06 N
ovem

ber 2020



Moreover, the attributionmetric is easily implemented and has

less/negligible sampling error.

f. Salinity change as an indicator of changes in the
hydrological cycle
Many different methods have been proposed to quantify the

hydrological cycle amplification on the basis of ocean salinity

changes (Durack et al. 2012; Skliris et al. 2016; Vinogradova

and Ponte 2017; Zika et al. 2018). Here we use the SC metric

along with a similar E 2 P contrast metric, defined as the dif-

ference betweenE2P averaged over higher versus lowerE2P

regions relative to the ocean global median.

We use the observed salinity change and the slope of the

regression between the model-based salinity contrasts and the

E 2 P contrasts to determine E 2 P change since 1960. The

salinity–E 2 P regression is obtained by an OLS fit of model

simulations for the period 1960–2030 for Hist, RCP2.6, 4.5, and

8.5 together (Fig. 16), or within 1960–2005 for Hist only. The

uncertainty range of the salinity–E 2 P relation is determined

from the 1s model spread. And the uncertainty range in de-

rived E 2 P change is calculated by a Monte Carlo simulation

considering the uncertainty in both observational salinity

contrasts trend and the model-based salinity–E 2 P correla-

tion. For the Monte Carlo simulation, 50 000 realizations were

performed. We assumed a Gaussian distribution for both the

salinity trend and the salinity–E 2 P regression.

The models reveal a clear positive correlation between the

salinity contrast metrics SC2000 and SC0 and this E 2 P con-

trast (Fig. 16), with a linear regression slope of 1.496 1.40 and

0.79 6 0.25, respectively, for 1960 to 2030. However, much of

this slope is driven by the period after 2005, where the aerosol

forcing in the CMIP projections does not consider the role

of some phenomena, such as volcanic aerosols. This is of

concern, as aerosols are known to strongly affect E 2 P

(Allen and Ingram 2002; Trenberth 2011; Allan et al. 2014,

2020). For the period up to 2005, the slopes are substantially

weaker (0.44 6 0.73 and 0.31 6 0.21). Thus, the CMIP5

models suggest a nonconstant scaling slope that depends on

different responses of E 2 P and salinity to time-variable

forcing, such as aerosols.

With this model uncertainty in mind, we approximately

derive the E 2 P change by multiplying the observed salinity

contrast metric with the model-derived slopes for 1960–2030.

The observed changes in the salinity-contrast metric (i.e., 5.2%6
0.4% for SC2000 and 7.5% 6 0.9% for SC0) over the period

1960–2017 result in a change in the E 2 P contrast of 7.8% 6
7.3% and 5.9%6 2.0%, respectively. All metrics have consistent

results for E 2 P pattern amplification (the range of central es-

timates of E 2 P contrast using different SC metrics is 5.2%–

7.8%; see the online supplemental material for SC1000 and

SC2000-q).

The slopes derived from CMIP5-Hist within 1960–2005 lead

to a weaker but still positive E2 P contrast (2.3% 6 3.8% for

SC2000, 2.3%6 1.7% for SC0). Despite the difference in SC0,

SC2000, SC1000, and SC2000-q change during 1960–2017, their

derived water cycle changes are highly consistent (2.3%–2.8%

for their central estimates), suggesting a robust estimate on the

water cycle changes, but the uncertainty for the surface metric

(SC0) is smaller because it shows a better linear correlation

with E 2 P. The larger uncertainty for subsurface metrics also

reveals reduced capability of models in simulating ocean sub-

surface properties (Cheng et al. 2016; Bilbao et al. 2019).

Furthermore, by using the observed land/ocean surface

warming of 0.88 6 0.11K for 1960–2017 and adopting the

FIG. 12. Salinity difference between August 1991 and August 1971 at 1500m depth for (a) the data in this study

and the (b) EN4 and (c) Ishii data. The purple (black) dots are the observation locations in August 1971 (August

1991) fromWOD. The near-zero anomalies are evident in data-sparse regions in the southeast Pacific Ocean in this

example for EN4 and Ishii, which is the indicator of the conservative bias. The contour shows zero anomaly.
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1960–2005 salinity–E 2 P correlation, we can infer a water

cycle amplification of 2.6% 6 4.4%K21 using SC2000 or

2.6%6 2.0%K21 for SC0 (Table 2). Here, again, Monte Carlo

simulation is used considering the additional uncertainty in

GMST estimates. Our surface and subsurface salinity metrics

result in very consistent central estimates of 2.6%–3.2%K21 of

water cycle amplification for 1960–2017 (Table 2; also see the

supplemental material for SC1000 and SC2000-q).

The concept of using models to estimate E2 P and salinity

correlations and applying this to the observed salinity change

pattern to infer the associated observed water cycle amplifi-

cation rate was pioneered by Durack et al. (2012), although

that study explored zonal mean SSS changes and they mainly

relied on CMIP future simulations to derive the salinity–E 2 P

correlations, which therefore features stronger correlations

due to lack of aerosol forcing. The new SC metric-based

estimates (2.6%–3.2%K21) based on improved salinity data

are consistent with some of previous estimates and suggest a

smaller water cycle amplification than the CC relationship

(;7%K21). Skliris et al. (2016) shows water cycle amplifi-

cation rates of 1.80%6 0.78%K21 for Ishii, 3.35%6 1.44%K21

for EN4, and 3.85% 6 1.64%K21 for DW10 derived from

the full-depth salinity change. Zika et al. (2018) combined

model and full-depth EN4 data, suggesting that the water

cycle has been amplified by 3.6% 6 2.1%K21 from 1957

to 2016.

All of these estimates, in spite of data uncertainties, are

significantly smaller than in Durack et al. (2012), suggesting a

water cycle amplification of ;8% 6 5%K21 warming. As the

SSS pattern amplification is within 5%–8% for all studies

(Table 2), besides the data difference, the discrepancy is most

likely due to the derived ratio between salinity and E 2 P. In

Durack et al. (2012), the SSS–(E2 P) ratio is about 1.7:1 (2:1)

derived from historical simulations (historical simulations and

future projections) of CMIP3models within 1950–2000.However,

the ratio of SSS and E2 P is about 3:1 in this study for historical

simulations ofCMIP5modelswithin 1960–2005 (corresponding to

the slope of 0.31 for SC0 and E 2 P regression). Both results

featured large spread across models. Therefore, the model un-

certainty and themethoddifferenceswhen usingmodel results are

probably responsible for the differences.

In summary, the salinity-contrast andE2P contrast metrics

provide a new estimate on the water cycle pattern amplifica-

tion, indicating that the global water cycle has been intensified

with global warming.

4. Concluding remarks
A new ocean subsurface salinity reconstruction extending

from 1960 for the top 2000m of the ocean is provided in this

study. The new reconstruction overcomes key shortcomings of

earlier reconstructions and has uncertainties that are much

better constrained. This strongly enhances the reliability and

FIG. 13. Climatology and long-term ocean salinity trend from CMIP5 models, for (a)–(d) CMIP5 historical

simulations and (e),(f) natural-forcing-only simulations. The linear trend is the ensemble median of the individual

model results. The nonstippled regions show the signals outside the 1s confidence level. The black contour shows

the global median of the climatological salinity for SSS or S2000.
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FIG. 14. Vertical section of the ocean salinity trends for 1960–2017 from sea surface to

2000m in (a) CMIP5-Hist and (b) CMIP5-Nat simulations. Shown are the zonal mean

sections in each ocean basin organized around the Southern Ocean in the center. Contours

show the associated climatological mean subsurface salinity with intervals of 0.25 g kg21.

(a) The ensemble median of trends for all CMIP5 historical simulations and (b) ensemble

median of trends for natural-only forcing simulations are presented. RCP4.5 projections are

used for the 2006–17 period, but using other scenarios does not impact the result.
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robustness of our key conclusions. First, we show with much

more confidence than possible before, that the ocean’s mean

salinity pattern has been amplified, with salty regions getting

saltier, and fresher regions becoming fresher. Second, we show

that this trend is very likely a consequence of human activities:

anthropogenic changes in the net freshwater fluxes over the

past nearly 60 years have left a clear human imprint on the

ocean’s salinity distribution. Third, this new reconstruction

also permits us to provide a more accurate constraint on the

hydrological cycle changes since 1960 in combination with

climate models.

Based on our analyses, we recommend using SC metrics,

introduced in IPCC AR5, as regularly updated and key indi-

cators for climate change. These metrics, especially for the

subsurface (i.e., SC2000), have several distinguishing features

as climate indicators: 1) their slowly evolving changes are

driven by climate change and they can be used to indicate and

quantify the change of global hydrological cycle; 2) their long-

term changes are highly distinguishable from sampling uncer-

tainty; and 3) it takes less than 15 (25) years for the long-term

subsurface (surface) trend to emerge from background short-

term fluctuations, better than (similar to) GMST changes.

Cheng et al. (2018) show it takes 27 years for GMST trend to

significantly emerge from background short-term fluctuations.

The remaining issues include the following:

1) The new dataset can be further improved by investigating

instrumental biases in salinity observations, which needs inter-

national collaboration, becausemost of the old instruments were

developed and used by different countries or institutions. A

comparison between old bottle data frommore than 100 cruises

with high-quality WOCE (World Ocean Circulation

Experiment) data indicates a systematic offset of ;2.55 3
1023 psu during the period from 1970 to 1985 (Gouretski and

Jancke 2000), of similar order to the observed globally averaged

0–2000msalinity changes in this study (Fig. 5), butmuch smaller

than the signal of the pattern amplification thatwe emphasize in

our study.Even thoughwe consider these potential biases as too

small to affect our conclusions, more accurate salinities would

permit a better quantification of themean ocean changes. Thus,

we recommend an international coordinated project for salinity

data intercomparison between various instruments to identify

and correct potential systematical errors.

2) The uncertainty value attached with the new salinity prod-

uct mainly reveals the sampling error, and it can further be

FIG. 15. Salinity changes in observations and models indexed by contrast between the high- and low-salinity

regions, i.e., (left) SC2000 and (right) SC0. (a), (b), Annual mean SC2000 and SC0 time series from 1960 to 2017.

The anomalies are relative to a 1960–89 baseline. (c),(d) Histograms of linear trends (1960–2017) of SC2000 and

SC0 for CMIP5Hist (and RCP4.5 within 2006–17; red) and Nat (blue) simulations. The fittedGaussian distribution

is included. The observational trend and results of seven independent datasets in green including two reanalyses

(ECCO, ORAS4) and five other objective products (EN4, Ishii, BOA, NCEI, SCRIPPS) are included. All of the

error ranges are 1s spreads, but the 2s spread for CMIP5-Nat is also shown. For the linear trend calculation,

reduction in degrees of freedom is taken into account.
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improved by explicitly quantifying and adding other error

sources, such as instrumental uncertainty, and errors re-

lated to data processing (i.e., use of climatology, vertical

interpolation, etc.).

3) As themodels show very large spread inE2P and salinity

simulations, quantification of hydrological cycle changes

through salinity change is hampered by model uncer-

tainty. Further refinement of the estimate can be im-

proved by selecting better models, constraining models

through observational properties, or even correcting

model biases, for example, taking account of the differ-

ence in the ocean warming in different models since the

strength of salinity responses partly depends on the sur-

face warming rate and spatial patterns (Durack et al. 2012;

Zika et al. 2018). Nevertheless, using models to under-

stand the formation of the salinity change pattern will be

an important follow-on works, such as Zika et al. (2018)

for SSS changes.

4) Difference among various gridded products need to be

better understood.

5) The uncertainty of our estimate of water cycle amplifica-

tion (2.6% 6 4.4%K21 using SC2000 or 2.6%6 2.0%K21

for SC0) is larger than reported in previous studies such

as Skliris et al. (2016) and Zika et al. (2018). This is

primarily because we took more sources of uncertainty

into account and these sources are additive. Specifically,

we considered three error sources: salinity data uncer-

tainty, model uncertainty, and GMST data uncertainty,

although model uncertainty dominates. Therefore, un-

derstanding model errors in simulating salinity andE2P

FIG. 16. Ocean salinity pattern amplification linked to E2 P pattern amplification. Percentage change of an

index reflecting the spatial contrast in E2P (y axis) vs an index reflecting the spatial contrast in ocean salinity

(x axis). (a) The oceanic index computed over the top 2000 m (SC2000), as well asthe index is computed for

(b) SC0, (c) SC1000, and (d) SC2000-q, respectively. All changes are percentages (%) of their climatological

mean within the recent decade (2008–17). The dots are model ensemble medians, and the sticks are 1s spread

of individual models. The linear fit for CMIP5-Hist and all RCP runs within 1960–2030 is presented

(black line).

1 DECEMBER 2020 CHENG ET AL . 10377

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/33/23/10357/5014865/jclid200366.pdf by guest on 06 N
ovem

ber 2020



changes is critical to reduce the uncertainty in water

cycle estimates.

Finally, we emphasize that the salinity changes have profound

implications for the ocean system and the life it supports

(Bindoff et al. 2019). For example, salinity change is one driver

of ocean general circulation (Huang et al. 1992; Fedorov et al.

2004); it plays an important role in the sustainment and change

of Atlantic meridional overturning circulation (Wunsch 2002).

The strengthening of the salinity contrast tends to enhance

ocean stratification in the high-latitude regions, amplifying the

effects of ocean warming. This reduces ocean ventilation, af-

fecting, for example, the supply of oxygen into the ocean’s

interior, and thus contributing substantially to ocean deoxy-

genation (Keeling et al. 2010). Furthermore, high-latitude

freshening also tends to exacerbate ocean acidification by dilut-

ing the concentration of substances acting as buffers. Continued

observations and study of salinity changes will be essential for

further understanding of climate system change and its impacts

(Durack et al. 2016; Vinogradova et al. 2019).
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