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Increasing anthropogenic greenhouse gas (GHG) 
concentrations cause a positive Earth energy imbalance 
(EEI), with resulting surplus heat in the climate system 
increasing ocean heat content (OHC)1–3 (Fig. 1a, F1). 
Unprecedented oceanic warming has been observed 
since at least the 1950s, reaching record values from 
2012–2021 (rEFs.3,4). This oceanic warming has been 
pervasive, spreading from the surface to the abyssal lay-
ers (each responding differently; Box 1), and with the 
long- term oHC trend accelerating5–8.

Owing to the large thermal inertia of the ocean, 
subsurface warming represents the slow response 
to external influences, in particular to GHG forcing 
(Box 1). In response to past and current carbon emis-
sions, future ocean warming is therefore committed for 
many centuries5,9, and is related to the current acceler-
ation of ocean warming10 (Fig. 1a). For instance, under 
representative concentration pathway (RCP) 8.5, it is pro-
jected that the total upper-2,000- m OHC increase from 
2017–2100 will be ~5–7 times that observed from 1970 
to 2017 (rEF.6). The irreversibility of this ocean warming  
on centennial timescales creates additional require-
ments for climate policy, particularly considering the 
widespread impacts10,11.

Indeed, ocean warming has a multifaceted role in the 
Earth system via its links to the energy, water and carbon 

cycles, and resulting feedbacks (Fig. 1). For instance, the 
vast majority of radiative energy trapped by GHGs is 
ultimately absorbed at the ocean surface. Part of the 
energy is stored in the ocean, but this warming leads to 
increased longwave radiation and surface evaporation, 
cooling the ocean12,13 (Fig. 1a, F2). Increased evaporation, 
in turn, leads to moistening of the atmosphere, released 
as latent heat during precipitation14, invigorating the 
hydrological cycle15 (Fig. 1a, F3). In response, the sea 
surface salinity pattern is amplified, with salty regions 
getting saltier and fresh regions getting fresher16. These 
temperature and salinity changes also alter ocean den-
sity and circulation, triggering global ocean heat uptake 
(OHU)6,17. Ocean warming also affects the Earth’s  
surface albedo18–20, and sea- ice and ice- sheet21,22 melt 
processes, increasing OHU11,23 (Fig. 1a, F4 and F5).

ocean heat redistribution processes, including circu-
lation, mixing and convection, eventually spread this 
additional heat to the ocean interior24–26 (Fig. 1a, F6). 
With this heat, anthropogenic CO2 is also absorbed 
and transported, leading to a synchronous increase of 
OHC and ocean acidification27,28. However, through 
increased stratification and reduced uptake capacity and 
efficiency, warming decreases the efficiency of the oce-
anic carbon sink, further enhancing atmospheric CO2 
and ocean warming, a positive feedback28,29 (Fig. 1a, F7). 

Earth energy imbalance
EEi. The net downwelling 
radiation at the top of the 
atmosphere, represented  
as the balance of absorbed 
solar radiation (allowing for 
reflection and scattering) and 
outgoing longwave radiation.

Ocean heat content
oHC, or ocean heat storage 
(oHs). A change or anomaly  
of the thermal energy of the 
ocean assumed to have a fixed 
volume (Vx,y,z, in units of J), and 
vertical integration (Vz, in units 
of J m−2). Calculated as oHC 
(x,y,z) = C TdV x y z( , , )p V x y z( , , )

∭ ρ  
following TEos-10 standards, 
where cp is a constant of 
~3,991.9 J (kg K)−1, ρ is 
potential density in kg m−3 and 
T is conservative temperature 
measured in degrees Celsius.
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In addition, ocean ecosystems and biological processes 
are also affected by ocean warming, and these then alter 
the carbon uptake and storage6,30. Thus, ocean warm-
ing threatens the fundamental conditions that make the 
Earth conducive to sustaining life (Fig. 1), necessitating 
better understanding of its changes.

In this Review, we outline past and future ocean 
warming, its drivers and consequences. We begin 
by outlining the current ocean observing system for 
monitoring ocean warming, followed by discussion 
of contemporary global and regional OHC changes. 
To support adaptation and mitigation, model projections 
of ocean warming are then provided. The far- reaching 
consequences of ocean warming on physical, human 
and biological systems of the Earth system are subse-
quently outlined, before ending with a discussion of the 
remaining challenges and outlook for monitoring and 
understanding ocean warming.

Observing and estimating OHC
The Global Ocean Observing System31 (GOOS) is essen-
tial for providing reliable estimates of ocean warming. 
The GOOS instrument types, geographical coverage 
and post- processing techniques have evolved rapidly32. 
Originally, subsurface OHC observations relied on 
hydrographic measurements from Nansen bottles (dom-
inating 1900–1940 GOOS), mechanical bathythermo-
graphs (MBTs; dominating within 1940–1970) and 
expendable bathythermographs (XBTs; dominating 
within 1970–2001)32,33.

From 1999, however, the international Argo system of 
autonomous profiling floats revolutionized oceanographic 
observations, measuring the upper 2,000 m at unprece-
dented resolution, and dominating ocean observations 
since about 2005 (rEFs.34,35). Currently, ~3,900 profiling 
floats constitute the array, providing a system to make 
near- global measurements of the Earth’s open ocean36, 
with a target resolution of one profile every 3° × 3° every 
10 days. However, the Argo data are much more limited 
in polar areas, shallow and coastal regions, in some major 
current systems, including the Indonesian throughflow 
(ITF), and in the water column below 2,000 m. Because the 

Argo network has incomplete global coverage, the global 
upper-2,000- m OHC rates based on Argo- only products 
can underestimate the rate of change by 10–20%37–39. Deep 
Argo has been developed to better capture measurements 
at 4,000–6,000 dbar (rEF.40) with a resolution target of one 
profile every 5° × 5° every 10 days41. So far, ~170 Deep 
Argo floats have been regionally implemented out of the 
necessary 1,200. At a minimum, Argo floats measure tem-
perature and salinity, but are increasingly also measuring 
biological and chemical properties42.

These Argo data are complemented by other obser-
vation platforms, including XBTs, MBTs, Nansen bot-
tles, ship- based CTDs (conductivity–temperature–depth 
sensors), gliders and moored arrays, offering opportu-
nities for OHC comparisons and data acquisition in 
regions where Argo does not operate. For instance, 
the global XBT network still provides continuous and 
high- resolution (eddy- resolving) temperature profile 
data along repeated transects and critical channels43. 
The Marine Mammals Exploring the Ocean Pole to 
Pole (MEOP) programme — which equips marine ani-
mals, primarily southern elephant seals or other pinni-
peds, with measurement devices — has also provided 
600,000 vertical profiles in high- latitude coastal regions 
since about 2004 (rEF.44). Ice- tethered profilers offer fur-
ther data in high latitudes, obtaining temperature and 
salinity profiles with excellent vertical resolution.

Synthesizing all these in situ measurements into 
estimates of OHC requires consideration of quality 
control, bias correction, gap- filling (mapping) and 
uncertainty33,45. For example, the first estimate of OHC 
indicated long- term ocean warming in the upper 
3,000 m over 1948–1998, and a particularly warm period 
from the 1970s to the early 1980s46,47 (Supplementary 
Table 1). However, this pronounced warm period was 
found to be a spurious consequence of systematic errors 
in XBT data48, as similarly identified in MBT49 and Argo 
data50. These data quality issues and error corrections 
must be taken into account (Supplementary Table 1). 
The mapping method — how a global map is created 
from incomplete and inhomogeneous observations — 
also introduces uncertainty36,51,52. Many mapping strat-
egies based on an objective analysis approach result 
in a conservative bias toward low- magnitude changes 
by assuming no change in less- sampled regions53–57 
(Supplementary Table 1). In doing so, some OHC esti-
mates exhibit unduly weak long- term trends5,53,58. Several 
methods have been proposed to resolve these mapping 
challenges arising from data scarcity, including: the use 
of model simulations to guide the reconstruction59; 
incorporating SST60 and/or sea level information61; 
combining five years of data for a pentadal estimate62; 
and using machine learning63 (Supplementary Table 1).

In addition to these direct methods to observe and 
estimate OHC, several alternative approaches are also 
available, each with their own limitations (Supplementary 
Table 1). Indirect methods can be used to infer OHC 
change from physical relationships between OHC and 
other variables33,64,65. For instance, altimetry and space 
gravimetry have been used since the early 2000s to esti-
mate OHC based on a sea level budget constraint64,66–68, 
and SST used based on an assumption that temperature 
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OHC trend
or alternatively, oHC rate, or 
tendency. The time derivative 
of oHC (doHC/dt), given in 
units of J yr−1 or W m−2.

Representative 
concentration pathway
rCP. The rCPs are scenarios  
of concentrations, and thereby 
emissions, of the full suite of 
greenhouse gases, aerosols 
and chemically active gases, as 
well as land use/land cover. in 
rCP2.6: radiative forcing peaks 
at ~3 W m−2 and then declines, 
to be limited at 2.6 W m−2 in 
2100. in rCP4.5 and rCP8.5: 
the radiative forcing reaches 
~4.5 W m−2 and >8.5 W m−2  
in 2100, respectively.

Ocean heat uptake
oHU. The accumulated 
contribution of heat added  
into the ocean (heat gain) or 
removed from the ocean (heat 
loss) through heat fluxes at the 
air–sea, ice–sea and land–sea 
interfaces (in units of W m−2). 
globally, it is synonymous  
with ‘oHC change, trend, rate, 
tendency’. regionally, oHU 
and redistribution contribute 
to local oHC change.

Ocean heat redistribution
The transport of heat  
within the ocean without 
involving any net global ocean 
warming or cooling through 
advection, convection, eddy 
mixing and small- scale 
diffusion.
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anomalies behave as a passive tracer69,70. These indi-
rect estimates rely on simplified assumptions, intro-
duce additional uncertainty (Supplementary Table 1)  
and exhibit larger spread (Fig. 2), but can complement 
direct estimates.

Reanalyses can further be used to infer OHC change, 
wherein data assimilation of various observations 

constrains a model71,72. These ocean reanalyses produce 
4D (latitude, longitude, depth and time) gridded esti-
mates of all variables, making them very suitable for 
mechanistic research. However, most reanalyses do not 
conserve properties (for example heat and salt budget) 
during the assimilation step and so are not dynamically 
consistent73,74. Comparing these reanalysis datasets 
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Fig. 1 | The role of ocean warming in the climate system. a | Principal processes and feedback loops (Fx) between  
ocean warming and physical and biogeochemical processes of the Earth system. The intersections between Earth system 
components indicates cycle and/or system coupling. b | Schematic representation of the linkage between ocean warming 
and multiple observed changes in the Earth system. Orange upward arrows indicate a global increase in the particular 
process, and green downward arrows a global decrease. Ocean warming is a key component of the Earth system, bridging 
key climate cycles and driving changes in Earth system processes and components.
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indicates substantial spread in OHC changes, imply-
ing that many are hampered by model and assimilation 
biases75. Yet reanalysis has the potential to be superior to 
objective analysis after ~2005 (with better consistency 
with top- of- atmosphere net radiation observations) 
after properly dealing with model and assimilation 
biases76,77, but with large and spurious variability before 
this time75 (Supplementary Fig. 1). Given that long- term 
changes are the focus of this Review, ocean reanalyses are 
therefore not included. Instead, subsequent discussion 
and analysis of OHC will focus on direct and indirect 
datasets that have complete bias correction and a valid 
evaluation procedure (Supplementary Table 1).

OHC changes since the mid- twentieth century
Various estimates of OHC are available since 1957/1958 
when a large amount of hydrographic data was collected 
for the International Geophysical Year32,43,59. Using three 
estimates that have been bias- corrected and have a valid 
evaluation procedure59,60,62, global (approximately 80° S 
to 90° N) OHC changes at 0–700 m and 0–2,000 m over 
1958–2020 are now described, as well as those at depths 
>2,000 m. To reduce the effects of high- frequency cli-
mate variability76,78–80, a locally weighted scatterplot 
smoothing (LOWESS) approach is used to calculate 
mean warming rates81 (Supplementary Information).

Global upper- ocean change. Robust warming is appar-
ent in the upper layers of the ocean since the late 
1950s (Fig. 2a,c and TABlE 1). For instance, at 0–700 m, 
globally averaged OHC increased by 229.5 ± 33.8 ZJ 
(1 ZJ = 1021 J; ±1.64σ error range represents the 90% 
confidence interval) from 1958 to 2019, equating to a 
mean ocean warming rate of 3.8 ± 0.6 ZJ yr−1 (1 ZJ yr−1 
≈ 0.062 W m−2). Over 0–2,000 m, these OHC changes 
are larger, owing to a greater ocean volume, and reach 
351.4 ± 59.8 ZJ over the same time period, equating to 
a mean ocean warming rate of 5.8 ± 1.0 ZJ yr−1. These 
estimates are generally consistent with past quantifi-
cations (TABlE 1), albeit with some variability in trends 

and uncertainty owing to differences in data selection, 
trend estimates and methodological approaches6,38,82 
(Supplementary Information).

These warming rates have increased over time 
(Fig. 2b,d). For instance, OHC at 0–700 m increased 
from ~0–3.5 ZJ yr−1 in the 1960s to ~4.8–8.0 ZJ yr−1 by the 
2010s. OHC at 0–2,000 m increased from ~0–4.8 ZJ yr−1 
to ~8.0–11.5 ZJ yr−1 over the same time periods. This 
quantification of acceleration is valid for >15- year peri-
ods, but its detection can be hampered by short- term 
fluctuations in OHC. At interannual timescales, global 
OHC fluctuations are dominated by El Niño–Southern 
Oscillation (ENSO) events79,80,83. During and after El 
Niño events, OHC decreases as some heat makes its way 
into the atmosphere, contributing to a temporal global 
surface warming. Major volcanic eruptions have also 
caused interannual to decadal cooling phases (Agung 
in 1963, El Chichón in 1982 and Pinatubo in 1991)84,85. 
Nevertheless, a shorter time series of EEI also reported 
an increase in rates since the early 2000s7,66,86, and the 
interplay between long- term change and interannual 
natural variations still needs to be elucidated.

A robust long- term acceleration is also evident in 
CMIP5 and CMIP6 simulations85,87,88, highlighting the 
anthropogenic connection to this accelerated warming 
(Fig. 2b,d). Indeed, detection and attribution research 
indicates that observed multidecadal- scale changes in 
global OHC are primarily the result of anthropogenic 
GHG emissions (partly offset by anthropogenic aero-
sols and volcanic forcings)85,89–91, and that they have 
already emerged from background natural internal cli-
mate variability92,93. The OHC rate increase since 2001 is 
also thought to be driven by a large decrease in reflected 
solar radiation with a small increase in emitted infrared 
radiation associated with anthropogenic forcing94.

Global deep and full- depth changes. Ocean warming is 
also evident at depth (Fig. 2e,f and TABlE 1). For instance, 
from 1958 to 2019, global OHC gain below 2,000 m is 
estimated at 26.0 ± 16.6 ZJ, or 0.43 ± 0.27 ZJ yr−1. This 
estimate assumes that anthropogenic influence is not 
detectable before 1991 owing to the long response time 
of the deep ocean38,58,59, but such deep layers might be 
affected by past climates that could offset a portion of the 
anthropogenic signal95. This post-1991 uptake assump-
tion has an observational basis. For example, high- 
quality hydrographic survey data indicate notable ocean 
warming of 0.06 ± 0.03 W m−2 (0.96 ± 0.48 ZJ yr−1) since 
1992 (rEFs.3,96). These warming signals are confirmed by 
other direct and indirect estimates97, albeit with variabil-
ity in magnitude, including from machine- learning63 and 
variational minimization98 approaches (Fig. 2e,f). Before 
the 1990s, observational estimates of OHC changes are 
more inconsistent63,69,70 (Fig. 2e). However, the CMIP6 
multimodel mean suggests a continuous increase in 
the deep ocean warming rate since the 1950s (Fig. 2f), 
but with substantial uncertainty due to diffusivity 
parameters, feedbacks and aerosols99.

OHC estimates at 0–2,000 m and below-2,000 m can 
be combined to yield total OHC changes at full depth. 
In doing so, it is estimated that ocean warming was 
378.4 ± 64.5 ZJ from 1958 to 2019 (6.20 ± 0.98 ZJ yr−1) 

Box 1 | Surface and subsurface ocean warming

The land, atmosphere and upper ocean (surface and mixed layer) respond relatively 
quickly (normally in years206) to surface radiative forcing, whereas the deep ocean 
typically adjusts over centuries to millennia11. Surface warming is approximately 
determined by cumulative emissions up to a given point in time, owing to a near- 
cancellation between the positive climate commitment and negative carbon cycle 
commitment9,270. This relationship implies that zero Co2 emissions (assuming constant 
non- Co2 emissions) lead to near- constant global surface temperature270 — a finding 
that has critical implications for climate- change mitigation. However, the subsurface 
ocean responds far more slowly to anthropogenic forcing, in part owing to the slow 
nature of large- scale ocean circulation. Future subsurface ocean warming therefore  
has a much longer commitment time9,11. even after net zero emissions are reached,  
the ocean subsurface will continue to warm as heat is transported downwards into 
deeper ocean waters, and a positive earth energy imbalance remains until ocean and 
land carbon uptake sufficiently reduces atmospheric Co2 concentrations. ocean heat 
content (oHC) and sea level rise both integrate ocean temperature changes below  
the surface, and they continue to increase long after surface temperature stabilizes. 
This fundamental distinction between surface warming and oHC increases has 
important implications for both mitigation and adaptation strategies. Furthermore, as 
the measurements of sea surface temperatures (SSTs) rely on different instruments, the 
observations of SSTs are fundamentally different in their temporal and spatial coverage 
and temporal extent compared to subsurface observations and oHC estimates271,272.
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Fig. 2 | Observed and projected ocean heat content changes. a | Observed 
change in global annual 0–700- m ocean heat content (OHC) from 1955 to 
2021, using various time series (listed by first author)37,52,55,56,59,60,62–65,69,269; Zanna 
represents the average of three estimates using different sea surface 
temperature datasets. Solid and dashed lines represent direct and indirect 
estimates, respectively, and shading indicates the 90% confidence intervals 
(±1.64σ). OHC anomalies are relative to a 2005–2019 baseline. b | Select 
observed (1955–2021) and modelled (1955–2100) rates of 0–700- m OHC 
change. Model time series are from CMIP6 and CMIP5 (for 0–2,000 m only), 

with bold lines depicting the ensemble means of historical simulations 
(1955–2014 for CMIP6 and 1955–2005 for CMIP5) and future projections 
under different scenarios (2021–2100) (Supplementary Table 3); shading 
represents the model spread (±1σ). Preindustrial control runs are used to adjust 
for simulation drift (Supplementary Information). c | As in a but for 0–2,000 m 
(rEFs.37,52,55,56,59,60,62,63,65,67,69,269). d | As in b but for 0–2,000 m, and also including 
rates of change from CMIP5 (dashed lines). e | As in a but for below 2,000 m 
(rEFs.63,69,70,96–98). f | As in b but for below 2,000 m. The ocean has been warming 
at an increasing rate since the 1950s, with warming irreversible this century.
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and 333.8 ± 53.9 ZJ from 1971 to 2018 (7.10 ± 1.15 ZJ yr−1), 
reinforcing evidence of OHC acceleration. These quanti-
fications are broadly consistent with other direct and indi-
rect results5,38,59,63,69, but the estimate is ~17% smaller than 
IPCC- AR6 for the period of 1971–2018 (rEF.82) (TABlE 1). 
Nevertheless, full- depth OHC estimates become more 
consistent after 1993 owing to increased data availability, 
totalling 245.7 ± 55.3 ZJ in this case and 263.0 ± 112.3 ZJ 
for IPCC- AR6 (rEF.82) (Supplementary Table 2).

Thus, as a global average, OHC has increased dra-
matically at the surface, at depth, and over the entire 
water column. These changes are particularly evident 
after 1990 and are accelerating over time. However, these 
global estimates mask regional contrasts between ocean 
basins.

Observed regional patterns of change
At the regional scale, there is distinct variability in surface 
and deeper OHC changes, with stronger area- averaged 
warming in the low- and middle- latitude Atlantic Ocean 
and southern oceans compared with other basins (Fig. 3). 
Here, OHC changes are assessed in six regions: the Pacific 
Ocean (35° S to 60° N), Atlantic Ocean (35° S to 64° N), 
Indian Ocean (35° S to 30° N), southern oceans (78°–35° S; 
the broad region south of Africa), the Mediterranean Sea 
and the Arctic Ocean. Given that the Cheng et al.59 data-
set minimizes regional errors through both mapping and 
instrumental bias correction100–102, it is used to calculate 
these regional OHC changes for the upper 2,000 m (see 
Supplementary Fig. 1 for other datasets). Quantification 
of deep OHC below 2,000 m is limited by data availability 
and is thus not thoroughly discussed.

Pacific Ocean. Changes in area- averaged Pacific Ocean 
OHC tend to resemble those of the global mean. 
Total OHC increased by 71.6 ± 8.2 ZJ from 1958 to 
2019 for the upper 2,000 m (~20% of the global upper-
2,000- m OHC increase), with an area- averaged change 
of 0.49 ± 0.06 × 109 J m−2 (Fig. 3c). This area- averaged 

change is comparatively smaller than other basins 
(Fig. 3a) owing to the large Pacific Ocean volume, and 
the less effective downward transfer of heat arising from 
an absence of deep water formation north of 35° S and 
limited mode water and intermediate water formation in 
the North Pacific103.

In addition to these long- term area- averaged 
changes, there is pronounced spatial and temporal vari-
ability. Prior to 1990, a statistically insignificant trend of 
0.05 ± 0.21 ZJ yr−1 is observed, followed by a substantial 
OHC increase of 2.42 ± 0.29 ZJ yr−1 since 1991 (Fig. 3c). 
Moreover, the Pacific Ocean warming pattern is char-
acterized by weak and statistically insignificant trends 
in the western basin, and weak but robust warming 
(~0.25–0.5 W m−2) in the east (Fig. 3a). Northeast Pacific 
regional warming is also significant and characterized 
by prolonged marine heat waves (MHWs) from 2014 to 
2021 (rEFs.104,105).

This spatial and temporal variability emerges due 
to the presence of strong modes of climate variabil-
ity, particularly ENSO79,106–108, the Interdecadal Pacific 
Oscillation (IPO) or Pacific Decadal Oscillation109–111, 
and Atlantic Multidecadal Variability (AMV)112,113. 
For instance, in the tropical Pacific, OHC decreases by 
~0.1–0.3 W m−2 K−1 during the transition from El Niño to 
La Niña. This change is linked to ocean heat release asso-
ciated with anomalous warming of surface waters79 and 
subsequent evaporative cooling, in turn causing warmer 
global- mean surface temperatures during El Niño 
years114. Besides, ENSO also causes regional OHC vari-
ability from month to month associated with an adiabatic 
redistribution of heat both laterally and vertically in the 
tropical ocean, resulting in a local monthly OHC change 
up to 100 W m−2 K−1 and an opposite OHC variation 
between 0–100- m and 100–300- m layers79 (Fig. 3c).

Although interannual Pacific OHC fluctuations are 
primarily influenced by ENSO, decadal- scale changes 
are dominated by the IPO. During a negative phase, 
stronger trade winds and an enhanced shallow tropical 

Table 1 | Total ocean heat content change and comparisons with previous assessments

Depth OHC trend 
1958–2019, 
this worka,b

OHC trend 
1960–2018, 
GCOS38

OHC trend 
1971–2018, this 
worka,b

OHC trend 
1971–2018, 
IPCC- AR682

OHC trend 
1970–2017, 
IPCC- SROCC6

OHC trend 
1971–2010, 
this worka,b

OHC trend 
1971–2010, 
IPCC- AR5 
(Box 3.1)58

0–700 m 229.5 ± 33.8

(0.23 ± 0.03)

191.1 ± 10.7

(0.24 ± 0.03)

203.9 ± 33.3

(0.27 ± 0.04)

246.7 ± 80.6

(0.32 ± 0.10)

208.8 ± 38.4

(0.27 ± 0.05)

155.4 ± 29.7

(0.25 ± 0.05)

172.8 ± 20.4

(0.27 ± 0.03)

700–2,000 m 121.9 ± 34.3

(0.12 ± 0.04)

102.8 ± 7.9

(0.13 ± 0.02)

103.9 ± 27.9

(0.14 ± 0.04)

125.8 ± 27.8

(0.16 ± 0.04)

108.0 ± 30.7

(0.14 ± 0.04)

74.8 ± 22.6

(0.12 ± 0.04)

57.2

(0.09)

0–2,000 m 351.4 ± 59.8

(0.36 ± 0.06)

300.7 ± 19.4

(0.35 ± 0.04)

307.9 ± 52.6

(0.41 ± 0.07)

372.5 ± 85.3

(0.48 ± 0.11)

316.8 ± 49.2

(0.41 ± 0.06)

230.2 ± 47.0

(0.37 ± 0.08)

230.1

(0.36)

2,000–bottom 26.0 ± 16.6

(0.03 ± 0.02)

28.8 ± 12.2

(0.03 ± 0.01)

26.0 ± 16.6

(0.03 ± 0.02)

31.7 ± 15.8

(0.04 ± 0.02)

– 18.3 ± 16.6

(0.03 ± 0.03)

21.0

(0.04 ± 0.04)

Full depth 378.4 ± 64.5

(0.39 ± 0.07)

322.6 ± 30.8

(0.39 ± 0.04)

333.8 ± 53.9

(0.44 ± 0.08)

404.2 ± 112.3

(0.52 ± 0.15)

– 248.5 ± 52.9

(0.40 ± 0.08)

251.0

(0.39)

Values are given in ZJ; values in parentheses are in W m−2. GCOS, Global Climate Observing System; IPCC, Intergovernmental Panel on Climate Change;  
OHC, ocean heat content. aOHC estimates are based on three datasets59,60,62, with trends calculated separately for each dataset based on locally weighted 
scatterplot smoothing (LOWESS)81,259, and then averaged. Trends represent averages over the Earth’s surface (5.1 × 1014 m2). b90% confidence intervals are  
given, whereby uncertainty is quantified by estimating internal error and structural error separately, and assuming they are independent (see Supplementary 
Information). If instead it is assumed they are not independent, simply summing the two errors gives roughly 1.4 times larger error bars, as an upper limit.

Mode water
Formed when winter mixed 
layers are convectively 
overturned owing to 
gravitational instability, and 
characterized by low potential 
vorticity and nearly vertically 
homogeneous temperature, 
salinity and density.
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overturning increase OHU and subsurface heat storage115. 
This greater OHC increase is associated with a slowdown 
in global- mean surface air temperature increases115,116. 
The IPO, along with ENSO, also influences the ITF and 
thus heat redistribution between the Pacific and Indian 
Oceans107,117. Again during a negative IPO phase (or 
a La Niña event), model and observational evidence 
indicates that a substantial amount of heat can be trans-
ported from the Pacific to the Indian Ocean107,118–120. In 
the northwest Pacific, however, AMV governs decadal 
variability in North Pacific subtropical mode water and 
thereby OHC change112,121. For instance, during a posi-
tive AMV, as observed since ~1980, warming anomalies  
in the North Atlantic Ocean led to a poleward expansion 
of the westerly wind belt114 and the subtropical ocean 
circulation122,123, and a resulting large OHC anomaly in the  
northwest Pacific Ocean112. As a result of this decadal 
variability, OHC trends calculated over these timescales 
are influenced by the start and end points of the analysis, 
and are therefore somewhat uncertain.

Atlantic Ocean. OHC changes in the Atlantic are larger 
than those observed in the Pacific (Fig. 3a,d). Indeed, in the 
upper 2,000 m, OHC increased by 117.2 ± 7.5 ZJ over 1958–
2019 (~33% of the global upper-2,000- m OHC increase), 
with an area- averaged warming of 1.42 ± 0.09 × 109 J m−2, 
~3 times that for the Pacific Ocean (Fig. 3c). Spatial and 
temporal variability is also evident. For example, the 
Atlantic OHC trend doubled from 1.29 ± 0.19 ZJ yr−1 in 
1958–1990 to 2.66 ± 0.27 ZJ yr−1 in 1991–2019, indicating 
an earlier onset of warming in the Atlantic than the Pacific. 
The Atlantic is further host to some of the largest rates of 
regional OHC changes, >1 W m−2 in most regions between 
about 35° S and 40° N, but exceeding 2 W m−2 in the Gulf 
Stream of the North Atlantic (Fig. 3a).

Yet, whereas warming dominates the Atlantic average 
and regional signatures, cooling and a resultant reduc-
tion in heat content is evident at subpolar latitudes of 
the North Atlantic (~45–70° N, ~70° W to 0°) down to 
>800 m depth124 (Fig. 3a). The mean rate of OHC change 
is −0.6 W m−2 in this region since 1958. This ‘cold blob’ 
and the apparent cooling/warming dipole are a predicted 
consequence of circulation changes and heat redistribu-
tion in response to GHG and aerosol forcing4,24,27,90,125,126. 
Notably, these circulation responses include a slow-
down of Atlantic Meridional Overturning Circulation 
(AMOC)127,128, the fingerprint of which closely matches 
that of the OHC pattern129,130. However, there is a lack of 
long- term observational evidence for this AMOC slow-
down, with some direct and indirect estimates suggesting 
a subtle reduction in meridional heat transport at 26° N 
in the Atlantic128,131–133, in concert with fluctuations in the 
North Atlantic Oscillation134 (NAO). Moreover, mod-
elling results are inconsistent in terms of the spatial pat-
tern and timing of the cold blob in response to AMOC  
changes135,136, partly because of the incoherence of AMOC at  
different latitudes137. As such, changes in the AMOC and 
connections to the cold blob are still difficult to reconcile.

Atmospheric and air–sea interactions are vital 
processes in determining these North Atlantic OHC 
changes138. There have been substantial changes in 
the atmospheric circulation over the subpolar North 

Atlantic, including a northward movement of the jet 
stream and increased storminess139,140. Moreover, in the 
subarctic region where the cold blob is located, there 
is substantial heat loss attributable to intensified local 
winds associated with an NAO- like atmospheric cir-
culation pattern during those winters141,142. A positive 
NAO favours strong westerly winds across the Atlantic 
mid- latitudes, bringing cooler drier air from North 
America and leading to increased winter surface heat 
and moisture fluxes into the atmosphere143. This elevated 
surface flux cools the ocean, increases deep water for-
mation in the Labrador Sea area, and leads to a stronger 
AMOC several years later143,144. North Atlantic subpolar 
cooling has also been traced to the remote impact of 
Indian Ocean via atmospheric teleconnections145.

Indian Ocean. In the Indian Ocean, OHC changes 
have been more subdued until the late 1990s. Here, 
total upper-2,000- m warming is 32.1 ± 4.0 ZJ from 
1958 to 2019 (accounting for ~9% of the global upper-
2,000- m OHC increase), and area- averaged warming 
0.70 ± 0.08 × 109 J m−2. Although the total Indian OHC 
increase is smaller than other basins because of its 
area, this area- averaged warming is slightly larger than 
the Pacific Ocean but much smaller than the Atlantic 
Ocean. Observational estimates suggest a statistically 
insignificant trend of −0.05 ± 0.10 ZJ yr−1 from 1958 
to 1990 (Fig. 3e), consistent across different datasets146 
(Supplementary Fig. 1). However, from the late 1990s, 
rapid warming is evident, reaching 1.21 ± 0.14 ZJ yr−1 
from 1991 to 2019, about half of the Pacific warming 
during the same period. The weak warming trend before 
2000 has been attributed to interdecadal changes in the 
Indo- Pacific Walker circulation and a corresponding 
upper- layer cooling of the tropical Indian Ocean, moder-
ating GHG- induced warming147. By contrast, the unprec-
edented rapid warming since 2000 has been linked to 
increased wind- driven heat transport in the ITF during 
the negative phase of the IPO120,148. Local wind and heat 
flux forcing also had a substantial contribution146.

In addition to these decadal- scale fluctuations, there 
is also substantial year- to- year variability. For example, 
12 ZJ of heat was lost from 2015 to 2018, with a simi-
lar magnitude of recovery from 2019 to 2020 (Fig. 3e). 
These pronounced interannual fluctuations in Indian 
Ocean heat content are partly controlled by ENSO via its 
atmospheric teleconnection to the Indian Ocean basin 
mode149,150 and impacts on the ITF106,117,151. During the 
2015/2016 super El Niño event, for example, an unprec-
edented reduction of ITF volume and heat transport was 
responsible for the sharp reduction of OHC in the Indian 
Ocean107,119. The Indian Ocean is also modulated by 
Southern Ocean variability and climate trends, includ-
ing the observed poleward migration of westerly winds, 
a southward shift of the subtropical gyre and resulting 
multidecadal trends in regional OHC152–154 over the 
subtropical southern Indian Ocean.

Southern oceans. Significant warming trends have also 
been identified over the southern oceans155–157, defined 
here as the entire region south of 35° S. Total warming 
in the upper 2,000 m is estimated at 126.6 ± 8.1 ZJ from  

www.nature.com/natrevearthenviron

R e v i e w s

782 | November 2022 | volume 3 



0123456789();: 

1958 to 2019 (accounting for ~36% of the global upper-
2,000- m OHC increase), equating to 1.40 ± 0.09 × 109 J m−2  
(Fig.  3f). The rate of southern oceans warming has 

almost doubled from 1.49 ± 0.23 ZJ yr−1 over 1958–1990 
to 2.72 ± 0.29 ZJ yr−1 over 1991–2019, and is consist-
ent across datasets (Supplementary Fig. 1). Hence the 
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southern oceans act as the largest heat reservoir since 
the 1950s, holding twice the excess anthropogenic heat 
as the Pacific. This OHC trend is broadly consistent 
with that of the Atlantic, which collectively reveal more 
intensive local warming than other basins.

In the southern oceans, these strongest regions  
of warming are concentrated on the northern flank of 
the main fronts of the Antarctic Circumpolar Current 
(ACC) (Fig. 3a) (note also distinct surface cooling north 
of the Ross Sea158,159). These long- term OHC changes are 
primarily attributable to greenhouse gas forcing, with a 
secondary role of stratospheric ozone depletion160,161, via 
several processes. For example, wind- driven upwelling 
of unmodified deep water keeps surface ocean cold, and 
the cold water absorbs anthropogenic heat which is then 
exported to the northern flank of the ACC by the back-
ground overturning circulation. There, it is subducted 
in the deep mixed layers formed north of the ACC162,163. 
These deep mixed layers are associated with the for-
mation of subantarctic mode water164,165, and, in turn, 
Antarctic Intermediate Water — it is these waters that are 
absorbing significant quantities of anthropogenic heat166. 
However, model limitations along with sparse measure-
ments have hampered understanding of the southern 
oceans’ changing hydrography167–169. For example, theo-
retical predictions and high- resolution ocean modelling 
suggest that the observed strengthening of the westerly 
winds would drive an increase in eddy activity without 
changing the mean ACC transport, because the energy 
cascades rapidly into small- scale eddy fields170–172. This 
effect should, in turn, impact ocean interior mixing173 
and ocean heat content trends, but modern- day climate 
models do not generally resolve mesoscale eddies over 
the southern oceans.

Other processes are also thought to be important 
in driving OHC changes to the north of the ACC. For 
instance, lateral currents driven by buoyancy and steered 
by topography are associated with an observed accel-
eration of the zonal geostrophic currents within 45° S 
to 60° S. The change of currents leads to anomalous 
heat transport that relates to the pattern of OHC174. 
Moreover, freshening, linked to an amplification of 
the global hydrological cycle and sea- ice and ice- shelf 
changes, has weakened entrainment of subsurface warm 
water and could regulate warming patterns in the south-
ern oceans175,176. Furthermore, the change in Antarctic 

sea- ice extent (a decrease since late 2016 after decades of 
increase) is probably associated with atmospheric circu-
lation variations (the southern annular mode), and then 
could regulate the surface heat flux and OHC13,177,178.

In addition, the Tasman Sea has also witnessed sub-
stantial OHC increases179,180, particularly near south-
eastern Australia (Fig. 3a). Changes here are potentially 
linked to a southward migration of the East Australia 
Current extension119 and a reduction in the ITF, linked to 
heat redistribution by variability in ocean circulation125.

Abyssal ocean warming is consistent with a reduced 
volume of Antarctic Bottom Water entering the deepest 
ocean layers. This abyssal warming has been linked to 
a meltwater- induced slowdown of the lower cell of the 
global meridional overturning circulation181, which would 
be consistent with abyssal OHC changes being largely due 
to heat redistribution, and not via anthropogenic heat 
uptake within the lower overturning cell.

The Mediterranean Sea. In the Mediterranean 
Sea, upper-2,000- m OHC increased by 3.3 ± 0.4 ZJ 
from 1958 to 2019, with area- averaged warming of 
1.11 ± 0.12 × 109 J m−2. This OHC increase exceeds the 
global, Pacific, Indian and Arctic Ocean changes (Fig. 3g). 
As in these other basins, warming trend is superimposed 
by multidecadal variability182,183, with OHC rate increas-
ing from −0.01 ± 0.01 ZJ yr−1 for the period of 1958–1990 
to 0.12 ± 0.01 ZJ yr−1 after 1991.

The Mediterranean Sea is linked with the adjacent 
North Atlantic Ocean via their overturning circulation 
systems184,185, which exert control over the basin’s ocean 
heat budget in addition to the local surface heat flux186,187. 
In the upper ocean, the Atlantic water (0–150 m) flows 
into the Mediterranean Sea and moves eastward, so the 
climatic conditions along this path are crucial in deter-
mining the heat content. A stronger OHC increase in 
the eastern basin (where warmer intermediate waters 
formed) than the western basin is linked to the anom-
alous atmospheric conditions and reduced river fresh-
water input124,188. These warmer (and also saltier) 
intermediate waters then spread towards the western 
basin at sea subsurface (150–450 m) on their way back 
to the North Atlantic189,190. The increasing transport of 
heat from the eastern to the western Mediterranean 
affects the deep water formation process in the Gulf of 
Lion, enhancing the tendency of this site to produce 
warmer and saltier deep waters188,191. When the heat of 
the intermediate and deep waters flows out of the Strait 
of Gibraltar (Mediterranean Outflow Water), it, in turn, 
influences the meridional overturning circulation in the 
Atlantic Ocean188,192,193.

Arctic Ocean. The Arctic Ocean has been steadily warm-
ing. Total upper-2,000- m OHC increased by 8.6 ± 1.3 ZJ 
from 1958 to 2019, equating to area- averaged changes 
of (0.59 ± 0.09) × 109 J m−2. Accordingly, about 2.5% of 
excess heat in the global upper-2,000- m ocean is stored 
in the Arctic basin since 1958 (3.3% since 1991)124,194, 
much of it being in the Atlantic Water layer20,194. 
Most of this OHC increase has occurred since the 
1990s195 (Fig. 3h), with statistically significant warming 
rates of 0.29 ± 0.05 ZJ yr−1 since 1991 compared with 

Fig. 3 | Observed and projected regional OHC changes. a | Observed OHC trends  
from 1958 to 2019 (rEF.59), with non- stippled regions depicting regions with statistically 
significant trends at the 90% confidence level. b | Total (left axis) and per- area (right axis) 
annual OHC changes from observations59 (black), and CMIP6 ensemble means under 
shared socioeconomic pathways SSP1-2.6 (blue) and SSP5-8.5 (red), all relative to a 
2005–2019 baseline. Constrained and unconstrained projections for 2081–2100 are 
provided in bars in b, and in all other places unconstrained results are presented. Shading 
depicts model spread of ±1σ. Red dashed lines illustrate the linear slope of the heating 
rate (for global, the Earth’s surface is used; for each basin, its area is used). The lower 
panel depicts temperature anomalies as a function of depth and time from observations 
(1958–2019) and SSP1-2.6 (2020–2100), relative to a 2005–2019 baseline (see Supplementary 
Fig. 8 for SSP5-8.5 equivalents). c | As in b, but for the Pacific Ocean. d | As in b, but for 
the Atlantic Ocean. e | As in b, but for the Indian Ocean. f | As in b, but for the southern 
oceans. g | As in b, but for the Mediterranean Sea. h | As in b, but for the Arctic Ocean. 
Although present in all basins, ocean warming is unevenly distributed, with future 
warming dependent on socioeconomic scenarios.
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0.01 ± 0.03 ZJ yr−1 from 1958 to 1990. While statistically 
significant, uncertainty of the Arctic OHC time series is 
much larger than for the other five basins (Fig. 3h) owing 
to reduced subsurface data availability in sea- ice condi-
tions. Nevertheless, observational datasets and a reanaly-
sis product194 exhibit consistent long- term changes for 
Arctic OHC (Supplementary Fig. 1).

OHC changes in the Arctic Ocean are strongly 
affected by rapid environmental changes, ocean heat 
transport and local air–sea/ice–sea heat exchanges20,194. 
For instance, ocean warming can be directly affected 
by heat transport into the region associated with 
the rapid decline of sea ice and the concurrent 
expansion of Atlantic waters into the Arctic Ocean 
(‘Atlantification’)196–199. However, direct observations 
reveal no significant trend in heat transport from the 
subtropical North Atlantic to the Arctic from 2014 to 
2018119,200, although others suggest an increase from 1993 
to 2016201, highlighting disparities related to both data 
uncertainty and substantial interannual variability20. 
Other environmental changes also affect Arctic Ocean 
OHC, including amplified surface warming since the 
1960s at a rate twice the global value, driven by positive 
surface heat flux into the ocean associated with reduced 
outgoing longwave radiation and a reduction in albedo 
from the sea- ice–albedo feedback23,197. However, the 
air–sea/ice–sea heat exchanges are currently poorly 
quantified because of the data insufficiency20.

Thus, over 1958–2019, the southern oceans and 
Atlantic Ocean are the main heat reservoir, accounting 
for 36% and 33% of the global OHS, respectively; the 
Pacific and Indian oceans account for the other 20%  
and 9%. However, the percentages change with time and  
ocean area, given strong decadal variability of OHC 
change in each basin. Area- averaged warming is larger in 
the southern oceans, Atlantic Ocean and Mediterranean 
Sea (~1.11–1.42 × 109 J m−2) compared with the other 
basins (~0.49–0.70 × 109 J m−2), indicating very intensive 
warming mainly associated with the ocean circulations.

Ocean warming projections
In addition to the observed OHC changes, past GHG 
emissions have also committed the global ocean to 
future warming, the magnitude of which is depend-
ent on the future socioeconomic pathway6,202 (Fig. 3). 
Using drift- corrected models from the CMIP6 archive 
(Supplementary Table 3; Supplementary Fig. 2), these 
projected OHC changes are now discussed for the 
globally averaged ocean and for individual basins.

Global change projections. The CMIP6 models project 
continued ocean warming as a result of past and future 
GHG emissions. Under shared socioeconomic pathway 
SSP5-8.5, a high- emission scenario, total upper-2,000- 
m warming is estimated at 1,769 ZJ [1,523–2,206 ZJ; 
the 17–83% error range around a central estimate] 
by the end of the century (2081–2100 average relative 
to 2005–2019). For SSP1-2.6, a low- emission scenario, 
this OHC change becomes 930 [798–1,227] ZJ (Fig. 3b). 
However, these projections are strongly influenced by 
individual models’ equilibrium climate sensitivity (ECS). 
Specifically, some CMIP6 models exhibit ECS > 5 K 

(rEF.92) (Supplementary Figs. 3–7), and those models 
with higher ECS tend to project stronger ocean warming 
by the end of the century owing to strong correlations 
between those metrics203,204. As such, there is strong moti-
vation to use observational trends from 2005–2019 to 
better constrain future projections205 and produce more 
realistic OHC estimates (Supplementary Information).

In doing so, global OHC trends are slightly enhanced 
and uncertainties reduced, with the weight of both very 
low and very high ECS models being reduced. Total 
observationally constrained upper-2,000- m warm-
ing by the end of the century is estimated at 1,030 
[839–1,228] ZJ and 1,874 [1,637–2,109] ZJ for SSP1-2.6 
and SSP5-8.5, respectively (Fig. 3b). These projections 
are broadly consistent with CMIP5 results5,205 (Fig. 2d), 
and represent OHC changes ~2–4 and ~4–6 times the 
observed 1958–2019 value (TABlE 1 and Supplementary 
Table 4). Projections for 0–700 m and full depth are 1,221 
[1,021–1,422] ZJ and 1,967 [1,721–2,205] ZJ for SSP5-8.5, 
561 [408–723] ZJ and 1,103 [907–1,297] ZJ for SSP1-2.6  
(Supplementary Table 4 and 5). Importantly, these 
observationally constrained projections result in a sub-
stantial reduction in the uncertainty range, especially  
the upper bound (Supplementary Table 4 and 5). Thus, the  
largest CMIP6 projections from both very low and very 
high ECS models are very unlikely as they overestimate 
ocean warming over 2005–2019.

In addition to differences in total OHC between 
scenarios, rates of warming also vary. For instance,  
the projections (here unconstrained) indicate that, in the  
upper 2,000 m, the ocean warming rate will proba-
bly peak between about 2030–2040 at ~0.8 W m−2 and 
then decrease to ~0.5 W m−2 at the end of this century 
for low- emission scenarios (SSP1-2.6 and RCP2.6; 
Fig. 2d). In contrast, for a high- emission future (SSP5-8.5  
and RCP8.5), ocean warming continues to increase 
throughout the twenty- first century to ~2.0–2.2 W m−2 
by the 2090s, ~4 times the current level of OHU (Fig. 2d). 
Such scenario differences are also evident in the upper 
700 m; OHC rates peak at ~0.5–0.6 W m−2 around 2030 
and decrease to ~0.2–0.3 W m−2 during the 2090 s for 
SSP1-2.6, and continue increase to ~1.5 W m−2 during 
the 2090s for SSP5-8.5 (Fig. 2b). At depth (<2,000 m), 
these scenario differences are much smaller (Fig. 2f).

The vertical structure of global ocean warming is 
further distinct under different scenarios. For SSP1-
2.6, global sea surface warming is stabilized at ~0.6 °C 
(relative to a 2005–2019 baseline) after ~2050 (Fig. 3b), 
consistent with the Paris Agreement of limiting global 
surface temperature to 2 °C above the preindustrial level. 
However, subsurface (below ~100 m) warming contin-
ues, and anthropogenic heat penetrates the deep layers 
in all ocean basins (Fig. 3b). For SSP5-8.5, both global 
surface and subsurface warming continues to the end 
of this century and beyond, with a surface warming of 
>2.8 °C and upper-600- m warming of >1°C above the 
2005–2019 average (Supplementary Fig. 8).

Transient climate response and the vertical structure of 
OHC. The considerable heat penetration into the ocean 
interior critically affects surface temperature and there-
fore the global climate. The rate of OHC increase and 

Shared socioeconomic 
pathway
The ssPs are a set of plausible 
trajectories of societal 
development and radiative 
forcing. ssP1-2.6 is a relatively 
low- emission scenario, 
representing the pathways  
to limit the global surface 
warming below 2 °C, which 
requires immediate, rapid  
and large- scale reductions  
in greenhouse gas emissions. 
ssP5-8.5 is a higher emissions 
scenario with projected 
warming >3 °C by 2100.
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the efficiency with which heat is transported from the 
upper ocean into the deeper ocean are critical in setting 
the strength and timescale of the climate adjustment 
in response to anthropogenic influences24,203,206. One 
important climate- change metric is the transient cli-
mate response (TCR), the surface warming under a 1% 
per year CO2 increase from preindustrial values at the 
time of CO2 doubling (70 years). The rate and patterns 
of ocean heat content are linked to TCR via the coupling 
at the sea surface203,207.

Both low- and high- TCR models reveal strong warm-
ing from the Equator to 30° N, and warming to greater 
depths in higher- latitude ocean areas (Fig. 4a,b). However, 
in low- TCR models, there is a greater warming at depth 
compared with models with high TCR (Fig. 4c). These 
differences exist at all latitudes down to 1,000 m depths, 

although differences are weakest in regions of strong 
warming from the Equator to 30° N.

When integrated across the volumes of water for 
OHC (Fig. 4d), the Southern Hemisphere indicates 
stronger intermodel contrasts than the Northern 
Hemisphere. The strongest contrasts are found near the 
equatorial undercurrent, the origin of which remains 
an open question. The differences in the North Atlantic 
intermodel contrasts are likely to be due to the over-
turning circulation response to a warming climate. 
A key role for changes in upper- ocean salinity driven 
by both the surface freshwater flux and winds has been 
identified, with consequences for both the patterns and 
magnitudes of warming in coming decades208,209. Given 
the role of salinity and the fact that key cryosphere pro-
cesses are absent from the current generation of climate 
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models used for future projections210, important caveats 
exist regarding the ability to accurately estimate TCR 
and the latitudinal structure of future ocean warming. 
Nevertheless, the OHC differences between low- and 
high- TCR models reflect the higher OHU of low- TCR 
models (Fig. 4d).

Regional trend projections. As discussed, the pat-
tern of ocean warming has been non- uniform4 (Fig. 3). 
Accordingly, although all six regional basins are expected 
to warm throughout the twenty- first century — exceeding 
0.2 °C relative to a 2005–2019 baseline in the upper 1,200 m 
and at least 0.05 °C at 2,000 m — regional contrasts in rates 
of warming can be anticipated. These regional trends are 
now discussed, basing analyses on drift- corrected CMIP6 
model projections without observational constraints, as 
the emergent constraint method only applies for global 
OHC change (Fig. 3c–h). Thus, regional biases in models 
have not been fully accounted for211,212.

In the Pacific, total upper-2,000- m OHC change by 
the end of this century is projected to be 344 ± 74 ZJ for 
SSP1-2.6 and 575 ± 95 ZJ for SSP5-8.5 (Fig. 3c), ~3–6 times 
and ~6–10 times the observed changes over 1958–2019. 
Accordingly, the Pacific is expected to become the big-
gest heat reservoir owing to its large volume. However, 
the historical condition of low area- averaged warming 
continues. By the end of the century, area- averaged 
0–2,000- m OHC reaches 2.37 ± 0.51 × 109 J m−2 and 
3.97 ± 0.66 × 109 J m−2 for SSP1-2.6 and SSP5-8.5, respec-
tively (Fig. 3c). By 2100, the 0.2 °C warming isotherm, 
a rough indicator of the vertical extension of warming,  
is projected to reach depths of ~1,200 m under SSP1-2.6.  
This depth is shallower than all other basins, likely 
because the Pacific Ocean is dominated by shallow 
tropical and subtropical overturning cells, and ventila-
tion of thermocline water (~150–200 m) via subduction 
in the subtropical gyres213. However, as current climate 
models are not skilful at capturing ENSO214,215 and IPO124 
variability, future projections remain uncertain211,214.

Similar to its past changes, the Atlantic Ocean 
is projected to undergo substantial warming. Total 
upper-2,000-m OHC increases are estimated to be 
299 ± 84 ZJ for SSP1-2.6 and 546 ± 122 ZJ for SSP5-8.5, 
~1–4 and ~3–6 times the observed 1958–2019 change, 
respectively (Fig. 3d). This heat gain is broadly consist-
ent with that of the Pacific, despite representing only 
57% of its area. Accordingly, the Atlantic witnesses 
some of the largest area- averaged rates of warming 
at 0–2,000 m: 3.62 ± 1.02 × 109 J m−2 for SSP1-2.6 and 
6.61 ± 1.48 × 109 J m−2 for SSP5-8.5 (Fig. 3d). Moreover, the 
0.2 °C anomaly isotherm reaches ~2,000 m and maxi-
mum basin- mean subsurface warming exceeds ~1 °C 
at 200–600 m by the end of the century under SSP1-2.6 
(~1.6–2.8°C under SSP5-8.5). These large changes have 
been attributed to a decline of aerosol impacts in future 
Atlantic changes, reinforcing the greenhouse effect216,217.

In the Indian Ocean, total 0–2,000-m warming is 
projected to be 108 ± 34 ZJ and 183 ± 43 ZJ by 2100 for 
SSP1-2.6 and SSP5-8.5, respectively (Fig. 3e), ~2–5 times 
and ~4–7 times that observed over 1958–2019. The 
area- averaged changes resemble those of the Pacific, 
and are projected to be 2.35 ± 0.73 × 109 J m−2 for the 

low- emission scenario, and 3.99 ± 0.95 × 109 J m−2 for  
the high- emission scenario (Fig. 3e). However, the uncer-
tainty range is larger than projected for the Pacific, partly 
associated with substantial natural variability, and con-
sistent with a large mismatch between observed and 
simulated Indian Ocean warming from 1958 to 2019. 
By 2100, the 0.2 °C warming isotherm reaches depths of 
~1,500 m, deeper than the Pacific Ocean but shallower 
than the Atlantic Ocean (Fig. 3e).

As in the Atlantic, projected changes in the southern 
oceans are also large. Net upper-2,000-m warming is pro-
jected to reach 220 ± 60 ZJ for SSP1-2.6 and 505 ± 95 ZJ 
for SSP5-8.5 (Fig. 3f), ~1–3 times and ~3–5 times the 
1958–2019 change, respectively. These net increases 
equate to area- averaged changes of 2.44 ± 0.67 × 109 J m−2  
and 5.60 ± 1.05 × 109 J m−2, stronger than the Pacific and  
Indian Oceans, but increasingly smaller than the 
Atlantic Ocean, contrasting with observed changes. This 
large ocean warming is linked to accelerating subpolar 
westerlies and significant overturning of surface heat 
due to the formation of subantarctic mode water164,165, 
Antarctic intermediate water218 in the subpolar ocean, 
and Antarctic Bottom Water around the Antarctic con-
tinental margin219, enhancing OHU and accumulation 
of heat just north of the ACC163,216,220. These water mass 
formations and vertical heat transports are reflected in 
deep- reaching warming by 2100, with the 0.2 °C anomaly 
isotherm expected to extend below 1,400 m (Fig. 3f). The 
uptake and drawdown of heat to depth is expected to slow 
around the Antarctic margin as meltwater and warming 
stratifies the surface mixed layer in those regions181 and 
slows the formation of dense shelf water, but warming is 
expected to continue over much of the southern oceans.

The Mediterranean OHC increase at 0–2,000 m is 
expected to reach 6 ± 2 ZJ and 12 ± 2 ZJ for SSP1-2.6 and 
SSP5-8.5, respectively221. These changes are ~1–3 times 
and ~2–5 times observed values over 1958–2019, and 
reflect area- averaged changes of 2.06 ± 0.60 × 109 J m−2 
and 4.09 ± 0.72 × 109 J m−2 (Fig. 3g). The 0.2 °C warming 
anomaly is projected to extend to ~1,200 m, which is 
deeper than for the global ocean182 (Fig. 3g), owing to the 
thermohaline circulation in the Mediterranean Sea and 
efficient heat propagation to deeper layers222,223. Finally, 
in the Arctic Ocean, upper-2,000- m warming by 2100 is 
projected to reach 36 ± 22 ZJ for SSP1-2.6 and 76 ± 35 ZJ 
for SSP5-8.5 (Fig. 3h). These changes correspond to sur-
face warming ~1–7 times and ~4–13 times that observed, 
totalling 2.50 ± 1.54 × 109 J m−2 and 5.25 ± 2.45 × 109 J m−2 
for the low and high scenarios, respectively. Moreover, the 
0.2 °C additional heat isotherm extends to ~1,800 m by 
the end of the century, and the >1 °C additional warming 
to within 100–800 m, spanning a larger depth than the 
Atlantic (Fig. 3h). The subsurface warming in the Arctic 
Ocean is much stronger than the global mean224 (Fig. 3b,h). 
However, both the observational record and future 
warming in the Arctic are less reliable, given poor data 
coverage at the subsurface and the biases in Arctic Ocean 
hydrography and ice simulation in CMIP6 models224.

Drivers of future OHC patterns. The patterns of ocean 
warming are driven by the heat uptake at the ocean sur-
face and the transport by currents, mixing and stirring in 
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the ocean interior. The patterns of ocean warming can be 
thought of as the sum of the added heat from the warming 
pattern set by surface heat fluxes and by the unperturbed 
ocean circulation (analogous to the uptake and trans-
port of passive tracers), and the redistributed heat as the 
transport of the OHU by the perturbed circulation27,127. 
These added and redistributed contributions to the total 
regional heat content changes can be quantified using a 
subset of models with carbon cycle27 (Fig. 5).

Over the historical period (here, 1958–2015), the total 
heat patterns are dominated by the redistribution, with 

a pattern correlation between total and redistributed 
heat of R = 0.84 on average (Fig. 5d,j and Supplementary 
Fig. 9). Indeed, warming along the Kuroshio extension, 
the southern oceans and to some extent the high- latitude 
North Atlantic are associated with redistribution of the 
pre-1958 temperatures from the changing ocean circu-
lation in these regions, in broad agreement with obser-
vational inferences during 2000–2015 (rEFs.125,225). Note, 
however, that the redistribution pattern varies widely 
across CMIP models. In contrast, warming in the sub-
tropical Atlantic basin, which has emerged over the 

a Total OHC (1958–2015) b Total OHC (2050) c Total OHC (2100)

d Normalized total OHC (1958–2015) e Normalized total OHC (2050) f Normalized total OHC (2100)

g Normalized added OHC (1958–2015) h Normalized added OHC (2050) i Normalized added OHC (2100)

j Normalized redistributed OHC (1958–2015)  k Normalized redistributed OHC (2050)  l Normalized redistributed OHC (2100)
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Fig. 5 | Simulated past and projected future ocean heat content change. 
a | Total OHC changes over 1858–2015 from an ensemble of 11 CMIP6 
models. b | Total OHC changes centred on 2050 (the 5- year mean from 
2048–2052), relative to the 2015–2020 mean, from an ensemble of 7 CMIP6 
models. c | As in b, but centred on 2100, representing the 5- year mean from 
2095 to 2100. d | As in a, but normalized by global ocean heat uptake. e | As 
in b, but normalized by global ocean heat uptake. f | As in c, but normalized 
by global ocean heat uptake. g | As in a, but for added OHC normalized by 
global ocean heat uptake. h | as in b, but for added OHC normalized  
by global ocean heat uptake. i | As in c, but for added OHC normalized by 

global ocean heat uptake. j | As in a, but for redistributed OHC normalized 
by global ocean heat uptake. k | As in b, but for redistributed OHC 
normalized by global ocean heat uptake. l | as in c, but for redistributed  
OHC normalized by global ocean heat uptake. Stippling indicates where 
the multimodel mean anomaly is less than the intermodel standard 
deviation. See Supplementary Information for list of models used. The 
patterns of ocean warming are mainly driven by the redistributed heat as 
the transport of the OHU by the perturbed circulation in the historical era, 
but are projected to be dominated by added heat in the twenty- first 
century, set by surface heat fluxes and the unperturbed ocean circulation.
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cooling effect of redistribution, is primarily associated 
with added heat in the CMIP6 ensemble (Fig. 5g).

Between 2015 and 2050, under SSP5-8.5 forcing, a 
warming signal is expected to emerge in most regions of 
the ocean (Fig. 5b,e and Supplementary Figs. 10 and 11).  
This overall warming pattern is primarily set by the 
passive uptake of added heat, with pattern correlations 
between total and added heat being 0.67 (Fig. 5e,h). The 
added heat pattern is likely to be dominated by warming 
within the subtropical gyres in all basins, on the equator-
ward flank of the ACC due to Ekman transport156,163,226, 
and in the North Atlantic between ~30° N and 55° N due 
to heat uptake at high latitudes and southward transport 
at depth by the overturning circulation69,227. Exceptions 
to this overall warming pattern are evident in the 
North Atlantic warming hole and parts of the southern 
oceans, where cooling prevails (Fig. 5e). Trends in both 
these regions continue to exhibit a large spread across 
CMIP6 models and are dominated by redistribution 
patterns (Fig. 5k). Moreover, some of the added warming 
is partially offset by redistribution within the subtropics 
(~10°–30° N/S), consistent with CMIP527.

By 2100, all regions of the ocean are projected 
to exhibit warming under SSP5-8.5 (Fig.  5c,f and 
Supplementary Figs. 10, 11). At this time, the southern 
oceans and the Atlantic basin, along with most other 
regions, are heavily influenced by added heat (Fig. 5i). 
However, the redistribution of heat and circulation 
changes reduce net warming in the lower- latitude sub-
tropics between ~10° and 30° N/S, and enhance warm-
ing in sectors of the mid- latitudes (between ~40° and  
50° N/S) and along the equator (between ~10° S  
and 10° N) (Fig. 5l). This redistribution at 2100 is broadly 
consistent with the regional effects projected to emerge 
by 2050, with correlation patterns of 2050 and 2100 
redistribution being 0.82. Idealized forcing experiments 
(flux perturbations under the flux- anomaly- forced 
model intercomparison project protocol228–230; 1% yr−1 
in CMIP5231), also reinforce this finding. Pattern correla-
tions between 2050 and 2100 OHU (Fig. 5e,f), added heat 
(Fig. 5h,i) and redistribution (Fig. 5k,l), are also high, at 
>0.8, >0.85 and >0.75, respectively, indicating that future 
OHC patterns have already emerged by 2050.

Thus, ocean heat redistribution, although dominant 
in the past, becomes less important in the future (at least 
by 2050). Future patterns become more dominated by 
added heat associated surface heat flux and mean ocean 
circulation. As such, future ocean warming patterns 
might become more predictable in the coming decades27. 
However, further work is necessary to assess these results 
in high- resolution eddy- rich models.

Impacts and consequences of ocean warming
Observed and projected ocean warming has substantial 
impacts across major Earth system components and 
scales (Fig. 1). For example, ocean warming accounts 
for more than 1/3 of global- mean sea level rise through 
thermal expansion, and thus dominates regional sea level 
patterns82,202. Sea level rise, in turn, increases the risks 
for coastal infrastructures and coastal habitats from salt 
water intrusion, coastal erosion and flooding in low- lying 
regions232,233 (Fig. 1b). Ocean warming also decreases 

ocean density and increases upper- ocean stratification 
by 5.3% since 1960 (rEF.234) (Fig. 1b), affecting the vertical  
and lateral exchanges of heat, carbon, oxygen, nutrients and  
other substances. The stratification increase, solubility 
reduction and circulation changes drive deoxygena-
tion in the ocean interior by ~0.5–3.3% since the 1960s 
(rEFs.6,235). By changing sea water buoyancy, ocean warm-
ing impacts ocean currents, for example, accelerating 
the zonally averaged Southern Ocean zonal flow in the 
upper layer174. Warmer water also reduces the efficiency 
of oceanic carbon uptake and storage28,236 (Fig. 1b). The 
compounded effect of each of these impacts, especially 
following extreme events236–238, poses more substantial 
stress on the environment than their individual effects236 
(Fig. 1b), driving, for example, changes in net primary and 
export production239,240 with socioeconomic impacts on 
marine fisheries and aquaculture systems241,242. Indeed, it 
is projected that, driven by multiple stressors, the maxi-
mum catch potential of tropical fish stocks in some trop-
ical exclusive economic zones will decline by up to 40% 
by the 2050s under the RCP8.5242.

MHWs offer a strong example, whereby the relent-
less increase in OHC has direct implications for the fre-
quency, intensity and extent of MHWs and other ‘hot 
spots’ within the ocean (Fig. 1b). With human- induced 
global warming and higher ocean heat content, it is 
inevitable that MHWs become more abundant, exten-
sive and longer- lasting237. The highly anomalous ocean 
waters, including SSTs and upper OHC, often persist 
for more than a month243, resulting in large impacts on 
ocean ecosystems and marine life. Effects from thermal 
stress causes mass mortality of benthic communities, 
including coral bleaching, changes in phytoplankton 
blooms, adverse effects on kelp forests and sea grasses, 
toxic algal blooms, shifts in species composition and 
geographical distribution, and decline in fish and fish-
eries and seabirds105,238. As such, MHWs modify ecosys-
tem assemblages, biodiversity, population extinctions 
and redistribution of habitat244,245.

One example is the prolonged MHW known as ‘the 
blob’ in the northeast Pacific and Gulf of Alaska from 
2014–2016. This event greatly affected the ocean food 
web, shrinking phytoplankton blooms, which, in turn, 
diminished copepods, zooplankton and krill, and small 
fish, leading to the demise of ~1 million birds (notably 
murres), ~100 million cod and hundreds of humpback 
whales104,105. A similar unprecedented MHW in the south 
Tasman Sea in 2015–2016, where SSTs were up to 2.9 °C 
above normal owing to an ENSO- related alteration of 
the ITF and East Australian Current119, also had sub-
stantial impacts246. Ecosystem impacts ranged from new 
disease outbreaks in farmed shellfish (oysters, abalone) 
and salmon, to mass mortality of wild mollusks, and 
many out- of- range observations of several fish species. 
Thus, with continued warming, MHW events and their 
impacts are expected to worsen: climate models project 
that the frequency of MHW might increase 50 times by 
2081–2100 relative to 1850–1900 under RCP8.5 (rEF.247).

Ocean warming also intensifies tropical cyclones248, 
and associated changing ocean surface currents can 
indirectly affect pathways of storms139 (Fig. 1b). In August 
2017, the Gulf of Mexico became the warmest on record 
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to that point in the summertime. There was a strong link 
between upper OHC and record high rainfalls of over 
60 inches (1,520 mm) over five days and extensive flood-
ing in hurricane Harvey over parts of Texas249. Other pro-
cesses at the air–sea interface affected by ocean warming 
include an increase of surface evaporation and rainfall12,13,  
and an increase in precipitation anomalies tied to ENSO, and  
associated extreme weather events250,251 (Fig. 1b).

Implications of ocean warming are also widespread 
across the Earth’s cryosphere195, and have in turn affected 
the ocean itself 252 (Fig. 1b). Examples include the thinning 
of floating ice shelves and marine terminating glaciers 
from basal ice melt21,253, and the retreat and speedup of 
ice- sheet outlet glaciers in Greenland and Antarctica254 and 
of tidewater glaciers in South America and in the Arctic255.

Other particular concerns are the potential abrupt 
changes associated with warming, such as ocean circu-
lation (for example, AMOC)256 and ocean ecosystems6,248. 
Ocean warming is a key driving element for AMOC 
changes. The potential for abrupt AMOC collapse as a 
‘low- probability, high- impact’ event cannot be ruled out 
in the future6,247. Each species of marine organisms has an 
optimal temperature window for functioning; most organ-
isms are therefore vulnerable to warming257. It is projected  
that most tropical coral reefs will be threatened258.

Summary and future perspectives
In summary, OHC has changed substantially since the 
1950s and is projected to continue to do so in the future. 
In the upper 2,000 m, net global increases of 351.4 ± 59.8  
ZJ (0.36 ± 0.06 W m−2) have been observed from 1958  
to 2019, with the rate of warming accelerating from  
~0.0–0.3 W m−2 in the 1960s to ~0.5–0.7 W m−2 in the 2010s.  
The pattern of ocean warming has been non- uniform 
in this historical era, including strong warming in the 
Atlantic and southern oceans, and overall is dominated 
by the redistribution of ocean heat by currents. Relative 
to 2005–2019, future warming is projected to reach 1,030 
[839–1,228] ZJ for SSP1-2.6 and 1,874 [1,637–2,109] ZJ 
for SSP5-8.5 at the end of this century, ~2–4 (SSP1-2.6)  
to ~4–6 times (SSP5-8.5) the observed 1958–2019 
change. On these timescales, added heat has an impor-
tant role for OHC projections. Moreover, low GHG emis-
sions would be likely to lead to a detectable and lasting 
reduction in ocean warming rate, with noticeable reduc-
tions in climate- change impacts. Indeed, given that ocean 
warming has already led to pervasive impacts and con-
sequences, monitoring, understanding, adapting to and 
mitigating ocean warming must continue to be a high 
priority. Nonetheless, several gaps remain in measuring, 
estimating and understanding ocean warming.

First, the current ocean observing system needs to be 
sustained and extended to monitor OHC change at vari-
ous spatiotemporal scales. The critical question of ‘how 
adequate is the ocean observing system for monitoring 
the OHC changes at various timescales?’ is still not fully 
answered. The international community have cast their 
eyes toward the future to improve not only the Argo 
fleet but also other measurement methodologies259–261. 
The ongoing and planned efforts include the main-
tenance of the current GOOS, and shipboard in situ 
measurements for calibration, validation and quality 

control of the Argo array; a drive toward spatial com-
pletion, including polar sea- ice zones, marginal seas 
and complicated channels; increased resolution in crit-
ical areas such as boundary currents and coastal areas; 
incorporation of deeper measurements (for example 
below 2,000 m); and inclusion of biological and chem-
ical signals, along with temperature and salinity (Deep 
Argo and BioGeoChemical Argo programmes). The 
scientific community and funding agencies will need to 
be mindful of ensuring a continuous and comprehen-
sive measurement network for the world’s ocean — a 
network that incorporates new technologies as they are 
developed and retires old technologies that have outlived 
their usefulness, but with a good understanding of the 
handoff between technologies.

Second, uncertainty for OHC estimate needs to be 
better understood and quantified. In addition to data 
coverage, uncertainty also stems from mapping meth-
ods associated with data sampling, instrumental bias 
correction, choice of climatology, quality- control and 
other data processing procedures. These error sources 
are not independent of each other and are likely to lead 
to biases in current analyses. Thus, uncertainty in OHC 
estimate is method- dependent and producer- dependent. 
The contribution of each error source to the total OHC 
uncertainty is not fully understood, and the error range 
given by different datasets results in roughly 10- fold 
differences33. New approaches can be used to better 
quantify the uncertainty: for example, synthetic data for 
understanding and evaluating the mapping method, and  
exploiting ensembles (applying different techniques  
and forming an ensemble of OHC estimates)59,262–264.

Third, syntheses of multisource (direct and indirect)  
observations and models are recommended to improve 
OHC estimates and mechanistic understanding. 
Synthesis of in situ observations with satellite- based 
observations (sea level altimetry, ocean colour, surface 
wind stress) and full atmospheric analyses shows the 
most promise. The indirect datasets can either serve 
as a cross- evaluation tool or constrain direct estimates, 
such as closing energy, water and sea level budgets. 
Attempts show promising results. As a coupled system, 
the separate impacts of atmospheric, ocean and ice (and 
other components) dynamics cannot be easily isolated265, 
and identifying the coupling mechanism driving OHC 
patterns remains a high research priority. Capabilities 
for integrating different sources of Earth system obser-
vations and information (for example, model- based 
data assimilation and simulations) for a comprehensive 
quantification of the energy budgets should be built. For 
example, the integration of atmospheric and oceanic 
data leads to a quantification of MHT time series at all 
latitudes, capable of resolving interannual variability133.

Fourth, the current generation of climate and Earth 
system models still contain non- negligible uncertain-
ties in representing past and future ocean warming 
trends202,205,212. For example, there is substantial uncer-
tainty in CMIP6 future projections in the Antarctic mar-
gin region, due to biases in simulated stratification158, 
hydrography around the Antarctic shelf 266, and missing 
processes, including eddies, tides, ice- shelf cavities, and 
ocean–ice- shelf interactions. In the tropics, it is known 
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that tropical cyclones mix the ocean through substan-
tial depths. Moreover, they form in hot spots and cool 
the ocean, yet they are largely absent from global mod-
els. In addition, interannual to decadal variability such 
as ENSO and the IPO remains poorly represented in 
modern- day climate models, yet they strongly control 
the pattern and timing of OHC anomalies. As ocean 
and atmospheric circulation have a key role in shaping 
the climate response (including ocean warming pattern 
and OHU efficiency)127,203, evaluating the accuracy of 
the wind, atmosphere and ocean circulation projections 
should continue to be a research priority. A continuous 
process- based understanding of model performance is 
recommended including the understanding and identifi-
cation of persistent biases in simulations, especially with 
respect to the diagnostics for Earth’s major system cycles.

Fifth, understanding of extreme OHC events, their 
compound effects and past changes in OHC should be 
strengthened. For example, MHWs have been identified 
from surface conditions, but subsurface components are 
also important, and OHC as an indicator offers a way to 

integrate these aspects. The simultaneous occurrence of 
ocean warming extremes with other extremes (deoxygen-
ation, acidification) requires special attention236. A more 
complete understanding of OHC changes in the deep 
past before the widespread availability of instrumental 
records is also critical to put the current changes in the 
context of a longer timescale267. Research on past climate 
change also helps us to understand how natural drivers 
and human influence have changed the Earth’s climate 
system. The difficulty is a lack of full- depth temperature 
proxy data. Several methods have been developed to 
derive OHC change back to the past 20,000 years (Last 
Glacial Maximum), but the uncertainty is large95,268.

Data availability
The observation and model data used in this review are 
available at http://www.ocean.iap.ac.cn/. CMIP6 model 
data is available at https://esgf-node.llnl.gov/search/
cmip6/.

Published online 18 October 2022

1. Hansen, J., Sato, M., Kharecha, P. & von Schuckmann, K. 
Earth’s energy imbalance and implications. Atmos. Chem. 
Phys. 11, 13421–13449 (2011).

2. Trenberth, K. E., Fasullo, J. T. & Kiehl, J. Earth’s global 
energy budget. Bull. Am. Meteorol. Soc. 90, 311–324 
(2009).

3. Johnson, G. C. et al. Ocean heat content. State of the 
Climate in 2020, Global Oceans. Bull. Am. Meteorol. 
Soc. 102, S156–S159 (2021).

4. Cheng, L. et al. Another record: ocean warming 
continues through 2021 despite La Niña conditions. 
Adv. Atmos. Sci. 39, 373–385 (2022).

5. Cheng, L., Abraham, J., Hausfather, Z. &  
Trenberth, K. E. How fast are the oceans warming? 
Science 363, 128–129 (2019).

6. Bindoff, N. L. et al. in Special Report on the Ocean and 
Cryosphere in a Changing Climate (eds Pörtner, H.-O. 
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