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ABSTRACT

In a comment on a 2017 paper by Cheung et al., Kravtsov states that the results of Cheung et al. are

invalidated by errors in the method used to estimate internal variability in historical surface temperatures,

which involves using the ensemble mean of simulations from phase 5 of the Coupled Model Intercomparison

Project (CMIP5) to estimate the forced signal. Kravtsov claims that differences between the forced signals in

the individual models and as defined by the multimodel ensemble mean lead to errors in the assessment of

internal variability in both model simulations and the instrumental record. Kravtsov proposes a different

method, which instead uses CMIP5 models with at least four realizations to define the forced component.

Here, it is shown that the conclusions of Cheung et al. are valid regardless of whether themethod of Cheung et

al. or that of Kravtsov is applied. Furthermore, many of the points raised byKravtsov are discussed in Cheung

et al., and the disagreements of Kravtsov appear to be mainly due to a misunderstanding of the aims of

Cheung et al.

1. Introduction

In our original article (Cheung et al. 2017, hereafter

C2017), we applied a semiempirical method [referred to

hereafter as the multimodel ensemble mean (MMEM)

method; Steinman et al. 2015] to the instrumental record

and the ensemble ofmodels from phase 5 of the Coupled

Model Intercomparison Project to isolate the surface

temperature internal climate variability (ICV) in the

Northern Hemisphere (NH), North Atlantic (NA), and

North Pacific (NP)—referred as the Northern Hemi-

sphere multidecadal oscillation (NMO), Atlantic mul-

tidecadal oscillation (AMO), and Pacific multidecadal

oscillation (PMO), respectively—and compared results

from the instrumental record and the CMIP5 historical

simulations. The MMEM method was originally de-

veloped by Mann et al. (2014), Steinman et al. (2015)
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and Frankcombe et al. (2015), who built upon the

work of several prior studies (e.g., Knight 2009; Terray

2012), in order 1) to provide improved estimates of

the internal variability signals in instrumental surface

temperature data, and 2) to demonstrate that sim-

ple linear detrending is a highly flawed method

for isolating internal variability in both simulated

and observed surface temperature series, such that

prior studies relying upon this method (e.g., Wyatt

et al. 2012; Wyatt and Curry 2014) are erroneous as a

result [seeMann et al. (2014) and Steinman et al. (2015)

for additional discussion on these points]. We have

therefore arrived at this discussion about the merits and

limitations of theMMEMand SMEMmethods as a direct

result of the failures of older methods, most notably the

linear detrending method (e.g., Wyatt et al. 2012), to

produce valid estimates of the internal variability

signal in climate time series.

In response to the work of Steinman et al. 2015 and

Mann et al. 2014, Kravtsov (2017a, hereafter K2017)

as well as Kravtsov et al. (2015), Kravtsov (2017b),

and Kravtsov and Callicutt (2017, hereafter KC2017)

have proposed that using the ensemble means of in-

dividual models—that is, the single-model ensemble

mean (SMEM) method (which was first applied by

Steinman et al. 2015; see supplemental material

therein)—produces more accurate assessments of in-

ternal variability in instrumental and simulated sur-

face temperature series. Through analysis of the

Community Earth System Model (CESM) Large En-

semble Project (LENS; Kay et al. 2015), K2017 first

argues that the method of KC2017 (the SMEM)

should be used instead of the MMEM to isolate in-

ternal climate variability. Based on this result, K2017

further applies the SMEM method to isolate ICV

in observations and CMIP5 historical simulations.

K2017 highlights that the ICV difference, in particu-

lar the low-frequency component (.40 yr), between

CMIP5 historical simulations and observations is

larger than reported in C2017. Last, K2017 suggests

1) that it is more appropriate to correlate the index to

the internal component of the SST field instead of the

raw SST field, 2) that there are major discrepancies

between the spatial patterns when using different

methods, and 3) that analyzing the multimodel mean

spatial pattern reduces the difference between the

methods (i.e., MMEM vs SMEM). Here we show that

the evidence presented in K2017 does not invalidate

any of the conclusions presented in C2017 and instead

assert that results from the MMEM and SMEM

methods do not yield substantial differences. We also

contend that K2017 misunderstood the aims and

disregarded the discussion in C2017 on uncertainties

and potential errors associated with application of

the MMEM. Therefore, K2017 has not raised any

points that were not addressed at least to some extent

by C2017.

In C2017, we show that 1) the low-frequency ICV

spatiotemporal patterns in models are inconsistent

with observations, and that this is likely due to a

combination of forcing uncertainties in climate models,

the relatively short length of the instrumental data, in-

consistency between modeled and real-world spatial

expressions of internal variability, and underesti-

mation of low-frequency internal variability by the

models; 2) the spatial and amplitude disagreement

between models and observations increases as the

smoothing time scale becomes longer; and 3) modeled

and observed internal climate variability in the North

Pacific, North Atlantic, and Northern Hemisphere are

inconsistent.

2. Data and results

a. Comparisons between observations, MMEM, and
SMEM

To be consistent with K2017, we used the data

provided by K2017 and reanalyzed the spatial pattern

and amplitude on different smoothing time scales. The

only difference between the simulation ensemble used

in K2017 and that applied here is the omission of two

CMIP5 historical simulations for the spatial pattern

TABLE 1. List of CMIP5 climate model simulations used in this

study. A single asterisk indicates that one realization from this

model is not included in spatial pattern analysis. (Acronym ex-

pansions are available online at http://www.ametsoc.org/

PubsAcronymList. The pn following the GISS model acronyms

refers to version n of the physics model used.)

Climate models No. of realizations

CanESM2 5

CCSM4 6

CNRM-CM5 10

CSIRO Mk3.6.0 10

GFDL CM2.1 10

GFDL CM3 5

GISS-E2-Hp1 6

GISS-E2-Hp2* 6

GISS-E2-Hp3 6

GISS-E2-Rp1 6

GISS-E2-Rp2 6

GISS-E2-Rp3 6

HadCM3 10

HadGEM-ES 5

IPSL-CM5A-LR 6

MIROC5* 5

MRI-CGCM3 3
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analysis, as these realizations were not used in C2017

(Table 1). For SMEM-based observations, we analyzed

themean estimated PMO,AMO, andNMOby averaging

the 1700 estimates of PMO, AMO, and NMO presented

in KC2017.

Comparisons between MMEM-based and SMEM-

based observed PMO, AMO, and NMO spatial pat-

terns across four different smoothing time scales (0, 10,

20, and 40 yr) do not yield any substantial difference

(Figs. 1–3). Comparisons of MMEM-based and SMEM-

based CMIP5 historical PMO, AMO, and NMO spatial

patterns also do not yield any notable differences

(Figs. 4–6). Therefore, the inconsistency between ob-

served and simulated low-frequency ICV spatial pat-

terns discussed by C2017 remains despite the use

of a different method of estimating the forced signal

(cf. Figs. 1–6). K2017 compares observed and simu-

lated PMO, AMO, and NMO amplitude using multiple

approaches and shows that the amplitudes of the sim-

ulated PMO, AMO, and NMO are lower than the ob-

served amplitudes. Even though a larger difference

between the amplitudes is obtained when using SMEM

rather than MMEM, the conclusion is the same: the

simulated low-frequency ICV amplitude is lower than

the observed amplitude. Therefore, the conclusion of

C2017 that simulated spatial patterns and amplitudes

are inconsistent with observed spatial patterns and

amplitudes remains robust.

We also reanalyzed the power spectra of observed and

simulated PMO, AMO, and NMO produced using the

two different methods (SMEM and MMEM) to de-

termine whether the amplitude derived from the SMEM

FIG. 1. Spatial patterns of the observed PMO (left) from C2017, (center) using theMMEMmethod, and (right) using the SMEMmethod.

Shown are the patterns after applying a low-pass filter of (a) 0, (b) 10, (c) 20, and (d) 40 yr.
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approach is different from the MMEM approach. The

power spectra are slightly different, with simulated

ICV having less power, while observed ICV has more

power at low frequencies when using the SMEM

method in comparison to the MMEMmethod (Fig. 7).

However, both results show that the difference be-

tween observations and historical simulations be-

comes substantial when focusing on low-frequency

variations. We further analyzed the spatial properties

of ICVs on different smoothing time scales based on

the two different methods. Both methods show that

discrepancies increase at longer smoothing time scales

(Figs. 1–6). These results therefore support the con-

clusion of C2017 that the spatial and temporal dis-

agreement between ICV in the historical simulations

and observations increases as the smoothing time scale

becomes longer.

Finally, we regressed the PMO and AMO onto the

NMO with different smoothing time scales in order to

examine the relative roles of the NP and NA in influ-

encing NH mean temperatures. We find that regression

results are not sensitive to the method (Figs. 8 and 9);

however, they are sensitive to the choice of datasets, both

for the observations and the models (i.e., which models

are included in the CMIP5 ensemble). We note that the

observational results for MMEM and SMEM presented

here (orange and purple bars in Figs. 8 and 9) differ from

the original study (green bars) even when applying the

same method, whereas results using the K2017 data

show the dominant role of the Pacific over all time

scales. We suggest that this difference could be caused

by the slightly different boundary constraints (e.g.,

different ensemble size to estimate the forced com-

ponent or the application of a different NH temperature

FIG. 2. As in Fig. 1, but displaying the AMO patterns.
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dataset), making the results fromour original study subject

to uncertainty. Nevertheless, regression results based on

the two different approaches are the same, showing that

the uncertainty does not result from the choice of method.

b. Aims of C2017

Most of the arguments put forth in K2017 appear to

result from a misunderstanding of the aims of C2017.

The primary objective of our original article is to better

understand internal variability in the observational re-

cord and to compare it to internal variability in the

CMIP5 model ensemble. The basis of the MMEM ap-

proach is that we only have one realization of the ob-

servational record, and that the forced component of the

observational record can be best estimated by the mul-

timodel mean of the CMIP5 historical simulations. We

agree that it is more suitable to use realizations from the

same model to characterize the internal variability of an

individual model; however, this gives us no guidance as to

the best way of applying the method to observations,

which may be treated as a model with only a single en-

semblemember.While there have been developments on

how to weigh different climate models when studying

various characteristics of the climate system (e.g., Knutti

et al. 2017), presently there is no consensus on which

model(s) may be best at simulating the forced signal.

Therefore, there is no justification for the application of a

particular individualmodel ensemble in this capacity.We

maintain that the multimodel ensemble mean remains

the most sensible choice for estimating the forced signal

in the observational record.

The second aim of C2017 is to generally under-

stand the ICV of CMIP5 models. We agree that some

models do better in simulating certain aspects of the

FIG. 3. As in Fig. 1, but displaying the NMO patterns.

1 DECEMBER 2017 CORRES PONDENCE 9777



climate system than others. In fact, C2017 showed that

models exhibit a wide range of spatial patterns, am-

plitude, and spectral characteristics (see Figs. 4, 5, and

7 in C2017). However, it is noteworthy that the aim of

C2017 is not to find the models that best simulate the

ICV of each target region, but to understand the be-

havior of the CMIP5 ensemble in a general sense. To

this end, C2017 compares ICV in the observational

record to that of the CMIP5 ensemble, instead of to

results from individual models.

K2017 argues that the MMEM approach mis-

characterizes the forced component of individual

climate models. However, section 3 of C2017 dis-

cusses the possible effects of inadequate removal of

external forcing, the uncertainty of external forcings used

in the CMIP5 ensemble, and the fact that differences in

model physics could lead to model–model and model–

observation discrepancies. K2017 also disagrees with the

method used to analyze the spatial pattern of ICV, ar-

guing that the forced component of each grid point should

be removed before computing the spatial correlation

pattern. We agree that this method has its advantages

theoretically; however, in practice the forced compo-

nent might not be sufficiently removed because of

larger variability at individual locations in comparison

to regional averages, which could lead to substantial

errors when analyzing the spatial patterns. Here we

demonstrate that when assessing the spatial patterns of

ICV, the choice of method for removing the forced

signal does not substantially change the results when

analyzing the multimodel ensemble average (see Fig. 5

in K2017; see also Figs. 4–6 herein). Therefore, the

FIG. 4. Spatial patterns of the historical PMO (left) from C2017, (center) using theMMEMmethod, and (right) using the SMEMmethod.

Shown are the patterns after applying a low-pass filter of (a) 0, (b) 10, (c) 20, and (d) 40 yr.
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spatial patterns of ICV derived from MMEM and

SMEM methods are not markedly different, and the

conclusions of C2017 remain robust.

3. Conclusions

K2017 argues that the conclusions of C2017 are in-

valid largely due to methodological errors associated

with the MMEM method. We do acknowledge that

there are uncertainties and deficiencies in the MMEM

method, as discussed in detail in Frankcombe et al.

(2015) as well as in C2017, which affect the estimation of

internal variability in the instrumental record and in the

CMIP5 historical simulations. By comparing results

derived from the two different approaches (SMEM and

MMEM), we show that the results of C2017 are robust

and, furthermore, are strengthened by the fact that they

can be obtained using distinct methods. We further re-

iterate that the goals of C2017 were to isolate internal

climate variability in the observational record and

compare it with results from the CMIP5 model en-

semble. We did not aim to identify the individual

model that can best simulate ICV in targeted regions.

Therefore, we find that the arguments and criticisms

raised by K2017 are primarily due to a misunder-

standing of the aims of C2017, and that the K2017 study

is complementary rather than in opposition to C2017.

Last, we would like to stress that both the SMEM and

MMEM methods are superior to older methods for

estimating the internal variability signal in climate

data and, in particular, are far more robust methods

than the linear detrending procedure applied by many

prior studies (e.g., Wyatt et al. 2012; Wyatt and Curry

2014).

FIG. 5. As in Fig. 4, but displaying the AMO patterns.
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FIG. 6. As in Fig. 4, but displaying the NMO patterns.

FIG. 7. Power spectra of the (a) PMO, (b) AMO, and (c) NMO from observations (brown) and historical simulations (green) used in

C2017, observations (purple) and historical simulations (blue) derived from theMMEMmethod, and observations (orange) and historical

simulations (red) derived from the SMEMmethod. The thick line for historical simulations represents the mean spectral power whereas

the thin lines represent each realization’s spectral power.
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FIG. 8. Regression coefficients of observed PMO andAMO from the original C2017 study (purple) and using the

K2017 data analyzed with the MMEM (orange) and SMEM (green) method. Red plus symbols represent outliers

(e.g., x . 2.7s, where s is the standard deviation) and bars depict median values.

FIG. 9. As in Fig. 8, but using the CMIP5 historical simulations. Orange plus symbols represent outliers (e.g.,

x . 2.7s, where s is the standard deviation) and bars depict median values.
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