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[1] We develop a modeling framework to investigate the influence of the North Atlantic
Oscillation (NAO) on phenological variability in Europe through its influence on the
distribution of wintertime synoptic-scale surface temperature variability. The approach
employs an eigendecomposition of NCEP daily winter surface temperature estimates from
the latter twentieth century to represent the spatial structure in the surface temperature
field. The subset of statistically significant principal components are modeled as first-order
autoregressive AR(1) processes, while the residual variance is modeled as spatially
uncorrelated AR(1) noise. For those principal component time series that exhibit a
statistically significant seasonal relationship with the NAO index, the parameters of the
AR(1) model are conditioned on the phase (‘‘high,’’ ‘‘neutral,’’ or ‘‘low’’) of the NAO.
This allows for realistic simulations of synoptic scale surface temperature variability over
Europe as it is influenced by the NAO index. The model is applied to the simulation of
trends in growing degree days (GDD) over Europe where simulated GDD variations
are shown to agree well with growing degrees days from the data and evidence from
available phenological records. Preliminary application of this model to a climate change
scenario involving an increasing NAO 50 years into the future suggests the potential for a
continued advancement of the start of the growing season. INDEX TERMS: 0317 Atmospheric

Composition and Structure: Chemical kinetic and photochemical properties; 1615 Global Change:

Biogeochemical processes (4805); 1620 Global Change: Climate dynamics (3309); 1630 Global Change:

Impact phenomena; KEYWORDS: climate change, NAO, phenology
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1. Introduction

[2] Much work has been done investigating the relation-
ship between the North Atlantic Oscillation (NAO) and the
timing of start of season phenological measures, such as
budburst and leaf out [Ottersen et al., 2001; D’Odorico et
al., 2002]. To date, however, the vast majority of studies
have used coarse empirical analyses, applying standard
statistical techniques (e.g., least squares regression) to
identify significant relationships between the NAO and
phenological metrics. In this paper we present a new
modeling framework for investigating connections between
the NAO and the growing season, employing a statistical
empirical model to diagnose growing degree day (GDD)
distributions based on the phase of the NAO and using these
GDD distributions to predict phenological events.
[3] The NAO represents a meridional displacement of

atmospheric mass between the Icelandic Low and Azores
High. It is one of the primary modes of cold season climate
variability in the Northern Hemisphere, explaining 31% of
the variance in Northern Hemisphere winter temperatures
(December through March) above 20�N [Hurrell, 1996].

When a winter is in the high or positive NAO phase, Europe
and many other extratropical areas in Eurasia experience
higher than normal temperatures; the converse is true during
a low or negative NAO. Over the past 20–30 years the NAO
has had a tendency to manifest in the positive phase, a trend
associated with winter warming over much of the Northern
Hemisphere extratropics [Intergovernmental Panel on
Climate Change (IPCC), 2001, chapter 2, pp. 152–153].
This warming, in turn, has been correlated to changes in the
timing of phenological events [Post and Stenseth, 1999;
Ottersen et al., 2001; Walther et al., 2002].
[4] As part of a project to investigate the timing of onset

and changes in the length of the growing season under
different climate regimes (i.e., NAO forcings), we devel-
oped a technique for simulating the influence of the NAO
on winter season (December through March) surface tem-
peratures. The development of this technique is presented in
section 2, and its application to phenological modeling is
discussed in section 3.

2. Spatial Auto-Resampling Method (SPARM)

[5] To identify dominant spatial and temporal modes of
variability in wintertime surface temperatures, we con-
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ducted a principal component analysis (PCA) on daily
surface temperature anomalies from the NCEP/NCAR Re-
analysis Data Set [Kalnay, 1996]. The NCEP/NCAR re-
analysis project uses a state of the art data assimilation
model to incorporate meteorological observations and gen-
erate data sets as complete as possible in space and time.
Quality for different variables differs based on the relative
influence of the model versus the data; surface temperature
(used in this study) is listed as a type B variable, meaning it
is influenced significantly by both the model and data.
Sources of bias arising from changes over time in data
assimilation in the NCEP reanalysis are likely to impact
trends in surface temperatures over time [Hurrell and
Trenberth, 1998], but are unlikely to have any significant
impact on synoptic-scale temperature variability. For a more
detailed discussion of the various strengths and weaknesses
implicit in the reanalysis data, the reader is directed to
Kalnay [1996]. We used data from winters (December
through March, with the designated year referring to the
year March falls in) 1949 through 1996, a period including
both negative and positive trends in the NAO [Hurrell,
1995, 1996]. Our study area is mainland Europe, from 0� to
40�E longitude and 35� to 70�N latitude, a region strongly
influenced by the winter NAO and witnessing significant
phenological changes in the last half century [Menzel and
Fabian, 1999; Menzel, 2000].
[6] A Preisendorfer Rule-n test truncated the output of the

PCA at 13 eigenvectors and associated principal compo-
nents, accounting for 91.75 % of the variance in the original
data (Table 1). The remaining variance is contained in the
residual temperatures, defined as the temperature anomalies
leftover after the temperature anomaly projections from
these 13 eigenvectors are subtracted from the original
temperature anomalies. We retained the eigenvectors ‘‘as
is’’ to define the spatial patterns in the surface temperature
fields. To represent temporal variability in the model, we
resampled from the distributions of the principal compo-
nents using lag-1 autoregressive models (AR1),

xtþ1 ¼ f xt � mð Þ þ etþ1 þ m;

where xt+1 is the value of eigenscore x at time t + 1, xt is the
value of x at time t, f is the autocorrelation coefficient

(proportional variance explained by x at time t), m is the
mean for the principal component time series, and e is a
random quantity drawn from a gaussian distribution,
defined by m and the innovation variance (variance of the
white noise).
[7] The seasonal means of eight of the principal com-

ponents correlated significantly (p <= .05) with the winter
NAO (PCs 1, 2, 3, 4, 7, 9, 10, 13) (Table 1): the
associated eigenvectors for these PCs are shown in
Figure 1. Combined, these 8 components describe
75.55% of the variance in the surface temperature data.
We used the combination of these eight components to
represent forcing by the NAO on European winter temper-
atures (December through March) as follows. A winter
(normally 121 days long, 122 days during leap years) was
demarked as occurring during a low, neutral, or high NAO
depending on whether the value for the winter NAO index
for that year fell below �1 standard deviation, within ±1
standard deviation, or above +1 standard deviation of the
winter NAO time series (December through March) from
winters for 1949–1996. We separately binned the daily
eigenscores for these eight PCs, according to the phase of
the NAO for that winter (low, neutral, or high). Then, for
each of these eight principal components for each phase of
the NAO, we fit an AR(1) model. In this way, parameters
in the AR(1) model are biased by the phase of the NAO.
Residual temperatures were modeled in a similar way. We
can then use these new PCs, in conjunction with the
eigenvectors, to project back into surface temperature
anomaly space and generate new temperature distributions
consistent with an a priori diagnosed phase of the NAO.
We developed the AR(1) models for the remaining five
principal components using the daily eigenscore distribu-
tion over the entire time period of the data, independent of
the phase of the NAO. Using the resampled principal
components and residual temperatures as our new time
series, and the associated eigenvectors to define the spatial
patterns, we back transformed the principal components
into surface temperature anomaly space, added these
anomalies back onto the mean temperatures, and recon-
structed new temperature fields over Europe. Such a
classification approach seeks to resolve the most coarse
NAO influences on synoptic-scale variability in the face of
a limited training data set. The approach is appropriate for
NAO variability or trends within the range of those
observed during the training interval, which likely includes
the moderate changes expected in future decades due to
anthropogenic forcing. The approach would not be appro-
priate in a ‘‘no analog’’ distant future or past climate state;
for example, a situation with fundamentally altered bound-
ary conditions where the relationship between the NAO
and surface temperatures breaks down.
[8] To summarize, we used the principal components and

associated eigenvectors to project back into surface temper-
ature anomaly space. The eigenvectors give the modeled data
spatial cohesiveness consistent with synoptic scale patterns
seen over Europe in the NCEP reanalysis. New principal
component time series are generated by resampling from the
distributions of the original principal components as AR(1)
processes. For those principal components that significantly
correlate (p <= .05) with the NAO, the parameters for the
AR(1) model are biased by the phase of the NAO (low,

Table 1. Summary of Output From the Unrotated EOF Analysis

of Daily Surface Temperaturesa

Mode Eigenvalue
Percent
Variance

Cumulative
Variance

Correlation
With NAO

1 104.6062 0.4102 0.4102 .766
2 49.5552 0.1943 0.6046 .333
3 21.9452 0.0861 0.6906 .470
4 14.2485 0.0559 0.7465 .553
5 10.0683 0.0395 0.7860 .256
6 6.8648 0.0269 0.8129 .022
7 6.3585 0.0249 0.8378 .514
8 4.7029 0.0184 0.8563 .002
9 4.0383 0.0158 0.8721 .295
10 3.9588 0.0155 0.8876 .762
11 2.9800 0.0117 0.8993 .034
12 2.4042 0.0094 0.9087 .006
13 2.2225 0.0087 0.9175 .416
aThe table shows the 13 modes retained using the Preisendorfer Rule-n

test and correlations between the winter NAO and the seasonal average for
each PC. Significant correlations (p < .05) are highlighted in boldface.

D16106 COOK ET AL.: NAO SIMULATION OF WINTER TEMPERATURES

2 of 10

D16106



Figure 1. Loadings from the principal component analysis, projected over Europe, of the eight
eigenvectors significantly correlated with the winter season NAO (p < .05).

D16106 COOK ET AL.: NAO SIMULATION OF WINTER TEMPERATURES

3 of 10

D16106



Figure 2. Surface temperature fields (in Kelvins) for nine consecutive days over Europe, from (a) data
from the NCEP reanalysis and (b) one realization of the SPARM model.
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neutral, or high). These new principal components are used to
represent the temporal variability consistent with an a priori
diagnosed NAO forcing.
[9] Using this technique we have been able to realistically

reproduce the spatial and temporal distributions of winter
temperatures over Europe. Figures 2a and 2b show temper-
ature fields over Europe for nine consecutive days from the
actual data and one realization of the model, respectively.
This qualitative comparison demonstrates how effectively
simulated fields capture the synoptic scale variability in the
actual data. Large-scale spatial features are reproduced, as is
the day-to-day progression (persistence) of the temperature
fields. Exact agreement is not expected because of the
stochastic nature of the model; rather the expectation is that
the coarse temporal and spatial features of the temperature
fields are reconstructed in the model. A more quantitative
verification of the method is shown in Table 2. In this table
we compare daily temperature and growing degree day
distributions between high, neutral, and low NAO years
from the data and the model. The central tendency and
variability in temperatures is well captured by the model for
the various phases of the NAO. A student’s t test shows that
there is no significant difference between the modeled and
actual distributions for the three phases at the p = .05 level
of significance. Additionally, the distribution and occur-
rence of growing degree days (an important variable for
phenological modeling; discussed in detail in section 3) is
also well captured for the three phases of the NAO.

3. Applications to Modeling Phenology

[10] The study of phenology has recently gained new
prominence in the global change research community,
especially for its recognized relevance to carbon cycling
and as a ‘‘fingerprint’’ for climatic change [Parmesan and
Yohe, 2003]. Models used to predict the timing and occur-
rence of phenological events (e.g., budburst, leaf-out, first
flowering, or more general ecosystem level metrics such as
‘‘onset’’) often use growing degree day approaches [Hunter
and Lechowicz, 1992; White et al., 1997, 1999; Kramer et
al., 2000]. In a typical growing degree day model, mean
daily temperatures above a certain threshold (‘‘growing
degree days’’) are summed each day (‘‘growing degree
day summations’’) until a critical sum is reached, triggering
the phenological event of interest. The threshold at which a
day qualifies as a growing degree day usually represents

some temperature that will elicit a biochemical response
from the plants that will stimulate the occurrence of the
phenological event. These models may also incorporate
moisture or radiation summations [White et al., 1997,
1999]. Our GDD summations represent cumulative summa-
tions of growing degree days over the entire winter, as this
is the window of influence for our model.
[11] We compared growing degree day summations (here-

after, GDD summations) from the NCEP reanalysis data set
and the NAO index against a phenological measure, the
Menzel departure series for Europe [Menzel, 2000]. The
departure series is a composite of phenological indicators
reprocessed from the International Phenological Gardens.
Each individual, species based series was converted to
anomaly values relative to its mean value for the 1976–
1980 period and then average values for all these anomaly
series were calculated for each year. The departure series
shows a general picture of the trend in the timing of the start
of the growing season (‘‘onset’’) for Europe, the period
characterized by an actively photosynthesizing biosphere
[Menzel and Fabian, 1999]. For our analyses, a day
qualifies as a growing degree day if the mean temperature
is above freezing (the threshold used in White et al. [1997,
1999]). GDD summations from the data explain a signifi-
cantly higher amount of the variance in the departure series
than the NAO index (R2 values of 0.48 for GDD summa-
tions, 0.22 for the NAO), indicating that the NAO alone
is not sufficient for predicting phenological variability
(Figure 3).
[12] As a preliminary test of the applicability of our

temperature model to phenological modeling, we compared
GDD summations from the model for each winter period
against the GDD summations from the data and the Menzel
departure series (Figure 4). Also shown in the same figure is
the Hurrell NAO, standardized to the same mean and
variance as the GDD summations from the data. A large
ensemble of 500 simulations was used to estimate the range
of variability of GDD summations consistent with the
stochastic nature of the weather forcing (the observed
GDD series represents the result of just one of an infinite
possibility of actual weather sequences consistent with the
observed NAO forcing). The GDD summations from the
data fall well within the resulting range of estimated
variability in the model, as does the Menzel departure series
(standardized to the same mean and variance as the GDD
summations from the data). On average, our model per-
formed better at predicting the Menzel departure series
(R2 = 0.26) than the NAO alone (R2 = 0.22, as described
above) (Figure 5). The biggest discrepancy appears to be
two years, 1959 and 1961. These were two years in the data
with negative and neutral index NAO values, but with high
GDD summations and extremely negative Menzel departure
values (�13.3 and �18 days for 1959 and 1961, respec-
tively). It is likely, then, that the high GDD summations and
extreme negative values for the Menzel departure series
during these years may be driven by factors other than the
NAO. When these values are dropped from the verification
regressions, the R2 value between the Menzel departure
series and the Hurrel NAO improved to 0.26 and the R2

value between the Menzel departure series and ensemble
mean GDD Summations from the model improved to 0.40.
The relationship between the GDD summations from the

Table 2. Parameters Describing the Distributions of Temperatures

and Growing Degree Days for High, Neutral, and Low NAO

Winters in the Data Set and From Three 10,000 Day Simulations of

the Modela

High
(Data)

High
(Model)

Neutral
(Data)

Neutral
(Model)

Low
(Data)

Low
(Model)

mtotal 274.998 274.986 273.733 273.776 273.103 273.110
stotal 53.132 53.013 68.270 68.527 74.9874 73.745
mGDD 279.521 279.615 279.653 279.829 279.955 279.870
sGDD 20.2171 19.618 20.311 21.089 22.382 22.004
Percent GDD 61.2 61.1 55.1 54.9 50.7 51.3

aSubscript ‘‘total’’ refers to the total temperature distributions, subscript
‘‘GDD’’ refers to the growing degree day distributions, and percent GDD
refers to the proportion of total days (in the data or model) that qualify as
growing degree days.
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Figure 3. Regression of the Menzel departure series against wintertime growing degree day
summations and the NAO index. This demonstrates the inadequacy of the NAO as a predictor and the
necessity of using growing degree day summations.
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Figure 4. Smoothed curves (5-year low-pass butterworth filter) for GDD summations (model and data,
in Kelvins, marked in scientific notation) and Menzel Departure series (standardized to the same mean
and variance as the GDD summations from the data). The shaded area represents the ±1 standard
deviation of the GDD summations for 500 realizations of the model, and the red dashed line is the
ensemble mean of the GDD summations for those same realizations. The axis for the departure series is
reversed because higher GDD summations are associated with an earlier onset date and therefore lower
departure values.

Figure 5. Regression of the Menzel departure series against ensemble mean growing degree day
summations from the SPARM model.
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data and the Menzel departure series remains the same (R2 =
0.48) when these two years are dropped. The complete R2

values for the verification regressions are summarized in
Table 3. These results lend support for this technique as an
appropriate framework for driving a phenology model
designed to capture variability in the growing season
associated with variability in the NAO.
[13] We also tested the model against two species based

phenological indicators from the Marsham phenological
record [Margary, 1926; Sparks and Carey, 1995] for a
longer period outside the model calibration period
(Figure 6). Because we lack data on GDD summations for
this period, we used the standardized Hurrell NAO (from
Figure 4) as a proxy. We use species based phenology time
series rather than the Menzel departure series, because the
latter covers only a relatively short time period (1959–
1993). Excellent agreement is seen between the GDD
simulations and one of the two long phenology series
(Mountain Ash). Less close agreement is observed with
the Hawthorn phenology series, but even here the observed

phenological variations are well within the estimated vari-
ability due to weather noise.
[14] Recent modeling evidence suggests the distinct pos-

sibility that the trend towards increasing prevalence of the
positive phase of the NAO during the Northern Hemisphere
winter may indeed represent a signature of anthropogenic
climate change [Osborn et al., 1999; Shindell et al., 1999].
We might speculate, in this scenario that the recent trend in
the NAO will continue, for example, into the mid 21st
century and beyond. For this preliminary climate change
scenario, we generated a hypothetical NAO series, from
1949 to 2051 (Figure 7). From 1949 to 2002, the actual
Hurrell NAO index is used. From 2003 through 2051 we
generated a stochastic NAO series and superimposed on it
the trend in the NAO from 1960 to 2000. We ran an
ensemble of 500 model simulations, forced by the NAO
index from Figure 6 and used the resulting GDD summa-
tions to predict phenological variability using the regression
equation from a previous comparison of GDD summations
and the Menzel departure series. Results from this simple
experiment are shown in Figure 8. This simple modeling
exercise suggests the potential for a continued advance in
onset date, when compared to the average confidence
intervals for the 1949 to 1960 period (the black dashed
lines, representing a period when the NAO was more or less
stationary, with a slight negative trend). Future changes are
outside the bounds of variability during a period when the
NAO was stationary or decreasing. While this represents
only a very preliminary analysis (the true dependence of
phenological variability on climate forcing is likely some-
what more complex than can be captured with these simple
GDD summations and this relatively simple phenology
series), these results nonetheless suggest the possibility of
continued advances in the onset date of phenological spring

Table 3. Summary of R2 Values for the Verification Regressions

Between the Menzel Departure Series and GDD Summations From

the Data, the Hurrell NAO, and Ensemble Mean GDD Summations

From the Modela

Regression R2, All Years
R2, Without
1959 and 1961

GDD (data) versus Menzel 0.48 0.48
NAO versus Menzel 0.22 0.26
GDD (model) versus Menzel 0.26 0.40

aIncluded are the R2 statistics for the regressions with and without years
1959 and 1961, the 2 years with low or neutral index NAO values but high
GDD summations and low Menzel departure values.

Figure 6. Same as Figure 4, but for two longer, species based phenological series (Hawthorn and
Mountain Ash). Because these phenology series cover a period prior to the period we have GDD
summations for, we used the standardized Hurrell NAO index (from Figure 4) as a proxy for GDD
summations. As in Figure 3, the second y axis for the phenology series is reversed, as higher growing
degree day summations are associated with earlier onset dates and thus lower values for the phenology
time series.
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Figure 7. NAO series used to drive the preliminary climate change scenario. From 1949 to 2002, the
Hurrell NAO series is used; for projections 50 years into the future (2003 to 2052) I stochastically
generated a synthetic NAO series, superimposed over the same linear trend of the Hurrell series from
1960 to 2002.

Figure 8. Onset departure values from a preliminary climate change simulation. The red line is the
ensemble mean departure for the simulations, and the grey shaded area represents the ±1 standard
deviation from the ensemble of model simulations. Black dashed lines represent the average ±1 standard
deviation for the period 1949 to 1960. All curves represent 5-year low-pass butterworth filters.
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in the Northern Hemisphere extratropics of up to a week or
more in the next half century, as a result of a continued trend
in the NAO.

4. Concluding Comments

[15] The technique we have outlined above represents a
useful approach for simulating the influence of the NAO on
European winter surface temperatures. Additionally it has
been shown that, at least in a preliminary test, this approach
is appropriate for phenological modeling applications and
offers a novel way to investigate variability in the growing
season that may be connected to variability in the NAO.
Because the model is built using current climatologies of
surface temperature and the NAO, we believe it will be most
useful for investigations of moderate climate changes, such
as those that may be associated with anthropogenic forcing.
This is evidenced in our preliminary climate change sce-
nario, which suggests the potential for a continued advance
of the growing season, should the current trend in the NAO
continue into the future. Because of the statistical/empirical
nature of the model, we assume stationarity in the relation-
ship between the NAO and daily surface temperatures when
we apply the model. As stated previously, this framework
would therefore be inappropriate for future or past climate
states with fundamentally different boundary conditions.
[16] Future work will lead to the development of an

ecosystem level phenology model for Europe, forced by
this temperature model, with later applications toward using
the phenology model to resolve variability in the terrestrial
carbon cycle associated with changes in the growing season.
As a final note, this technique could be applied with minor
modification to other studies involving variability in climate
indices and meteorological variables, e.g., the El-Nino
Southern Oscillation and precipitation.

[17] Acknowledgments. The authors wish to thank Annette Menzel
for providing her departure series for Europe and two anonymous reviewers
for their helpful comments. NCEP Reanalysis data provided by the NOAA-
CIRES Climate Diagnostics Center, Boulder, Colorado, USA, from their
Web site at http://www.cdc.noaa.gov. This work was supported in part
(M.E.M and B.I.C.) by the NOAA CIFAR program and the University of
Virginia Fund For Excellence in Science and Technology (FEST).

References
D’Odorico, P., J. Yoo, and S. Jaeger (2002), Changing seasons: An effect of
the North Atlantic Oscillation?, J. Clim., 15, 435–445.

Hunter, A. F., and M. J. Lechowicz (1992), Predicting the timing of
budburst in temperate trees, J. Appl. Ecol., 29, 597–604.

Hurrell, J. W. (1995), Decadal trends in the North Atlantic Oscillation and
relationships to regional temperature and precipitation, Science, 269,
676–679.

Hurrell, J. W. (1996), Influence of variations in extratropical wintertime
teleconnections on northern hemisphere temperature, Geophys. Res. Lett.,
23, 665–668.

Hurrell, J. W., and K. E. Trenberth (1998), Difficulties in obtaining reliable
temperature trends: Reconciling the surface and satellite microwave
sounding unit records, J. Clim., 11, 945–967.

Intergovernmental Panel on Climate Change (IPCC) (2001), Climate
Change 2001: Third Assessment Report of the Intergovernmental Panel
on Climate Change, Cambridge Univ. Press, New York.

Kalnay, E. (1996), The NCEP/NCAR 40-year reanalysis project, Bull. Am.
Meteorol. Soc., 77, 437–471.

Kramer, K., I. Leinonen, and D. Loustau (2000), The importance of
phenology for the evaluation of climate change on growth of boreal,
temperate and Mediterranean forests ecosystems: An overview, Int.
J. Biometeorol., 44, 67–75.

Margary, I. D. (1926), The Marsham phenological record in Norfolk,
1723–1925, and some others, Q. J. R. Meteorol. Soc., 22, 27–54.

Menzel, A. (2000), Trends in phenological phases in Europe between
1951–1996, Int. J. Biometeorol., 44, 76–81.

Menzel, A., and P. Fabian (1999), Growing season extended in Europe,
Nature, 397, 659.

Osborn, T. J., K. R. Briffa, S. F. B. Tett, P. D. Jones, and R. M. Trigo
(1999), Evaluation of the North Atlantic Oscillation as simulated by a
coupled climate model, Clim. Dyn., 15, 685–702.

Ottersen, G., B. Planque, A. Belgrano, E. Post, P. C. Reid, and N. C.
Stenseth (2001), Ecological effects of the North Atlantic Oscillation,
Oecologia, 128, 1–14.

Parmesan, C., and G. Yohe (2003), A globally coherent fingerprint of
climate change impacts across natural systems, Nature, 421, 37–42.

Post, E., and N. C. Stenseth (1999), Climatic variability, plant phenology,
and northern ungulates, Ecology, 80, 1322–1339.

Shindell, D. T., R. L. Miller, G. A. Schmidt, and L. Pandolfo (1999),
Simulation of recent northern winter climate trends by greenhouse-gas
forcing, Nature, 399, 452–455.

Sparks, T. H., and P. D. Carey (1995), The responses of species to climate
over two centuries: An analysis of the Marsham phenological record,
1736–1947, J. Ecol., 83, 321–329.

Walther, G. R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C.
Beebee, J. M. Fromentic, O. Hoegh-Guldberg, and F. Bairlein (2002),
Ecological responses to recent climate change, Nature, 416, 389–395.

White, M. A., P. E. Thornton, and S. W. Running (1997), A continental
phenology model for monitoring vegetation responses to interannual cli-
matic variability, Global Biogeochem. Cycles, 11(2), 217–234.

White, M. A., S. W. Running, and P. E. Thornton (1999), The impact
of growing season length variability on carbon assimilation and evapo-
transpiration over 88 years in the eastern U.S. deciduous forest, Int.
J. Biometeorol., 42, 139–145.

�����������������������
B. I. Cook, M. E. Mann, P. D’Odorico, and T. M. Smith, Department of

Environmental Sciences, University of Virginia, 291 McCormick Road,
Charlottesville, VA 22904, USA. (bc9z@virginia.edu; mann@virginia.edu;
paolo@virginia.edu; tms9a@virginia.edu)

D16106 COOK ET AL.: NAO SIMULATION OF WINTER TEMPERATURES

10 of 10

D16106


