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Climate change threatens terrestrial water
storage over the Tibetan Plateau
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Terrestrial water storage (TWS) over the Tibetan Plateau, a major global water tower, is crucial in determining water transport
and availability to a large downstream Asian population. Climate change impacts on historical and future TWS changes, however,
are not well quantified. Here we used bottom-up and top-down approaches to quantify a significant TWS decrease (10.2 Gtyr™)
over the Tibetan Plateau in recent decades (2002-2017), reflecting competing effects of glacier retreat, lake expansion and sub-
surface water loss. Despite the weakened trends in projected TWS, it shows large declines under a mid-range carbon emissions
scenario by the mid-twenty-first century. Excess water-loss projections for the Amu Darya and Indus basins present a critical
water resource threat, indicating declines of 119% and 79% in water-supply capacity, respectively. Our study highlights these
two hotspots as being at risk from climate change, informing adaptation strategies for these highly vulnerable regions.

supplies a substantial portion of the water demand for almost

2 billion people’. Unique high-elevation terrain and atmo-
spheric circulation dominated by monsoons and upper-level west-
erly winds>’ jointly generate precious freshwater resources in this
region. Relatively undisturbed by human activities, the TP has an
average elevation exceeding 4 km and serves as an important regula-
tor of the Asian monsoon system. Terrestrial water storage (TWS),
including all forms of surface and subsurface components, is cru-
cial in determining hydrologic transport and water availability* but
is highly sensitive to climate change®. Furthermore, water storage
is impacted by climate extremes, such as droughts®” and floods™’,
and is linked to global sea-level rise'®'". TWS change is thus a criti-
cal indicator of vulnerability of global water towers'2. Despite its
importance, the impact of climate change on historical and future
TWS over the TP remains largely underexplored in past work,
due primarily to uncertainties in observations and models in the
presence of extremely complex terrain and atmospheric circula-
tion. Challenges in interpreting satellite-based TWS observations
at large scales and in explicitly resolving all TWS components in
hydrologic modelling'>'* hinder precise assessments of the histori-
cal response of TWS to observed climate change. Moreover, there
are no existing studies of the potential response of TWS over the
TP to projected future climate change. Although a study by Pokhrel
et al.”” linked projected future drought changes to TWS at the global
scale, it did not assess changes over much of the TP (Supplementary
Fig. 1), where potential changes in TWS threaten large downstream
Asian populations.

Long-term TWS changes across the TP result mainly from
changes in glacier mass balance, lake volumes and subsurface
water storage, although TWS is also influenced by other compo-
nents that vary mostly at seasonal to interannual timescales (for
example, snow, canopy and reservoir water storage). Because of an
increasingly warm and wet climate, water storage over the TP has
changed substantially during the past two decades. Contributing
factors include glacier retreat over the southeastern TP'*", glacial

|<n0wn as the water towers of Asia, the Tibetan Plateau (TP)

mass gain in the Karakoram Mountains (Karakoram anomaly)'®",
lake expansion over the Inner TP**?' and widespread permafrost
degradation®*.

Most past studies have been limited to a subset of TWS com-
ponents (for example, glacier mass or lake water storage) quan-
tified using one specific method (for example, observational
analysis, modelling or diagnosis via remote sensing). Such stud-
ies have not yielded a comprehensive assessment of contribu-
tions to TWS changes. Advances in Gravity Recovery and Climate
Experiment (GRACE) and GRACE Follow-On (GRACE-FO)
satellite missions have yielded mature products over the past two
decades****, providing an unprecedented opportunity to quantify
TWS changes at large scales. However, GRACE products are poorly
constrained over the TP, displaying extreme sensitivity to underly-
ing assumptions of analytical methods used (for example, spheri-
cal harmonic versus mascon solutions)®. There is consequently no
consensus on TWS changes in this region. Previous studies have
not explored the sensitivity of GRACE solutions using indepen-
dent data sources. A reliable benchmark for the magnitude of TWS
changes over the TP has thus been lacking. The absence of future
projections of TWS, moreover, limits any guidance on policymak-
ing, despite the fact that the TP has long been considered a climate
change hotspot'>”".

In this Article, we attempt to fill these knowledge gaps by
exploring climate impacts on historical and future projected
TWS changes over the TP, which includes seven exorheic (open)
and five endorheic (closed) basins®® (Fig. 1 and Supplementary
Table 1). Using top-down (based on GRACE) and bottom-up
(based on component storages) approaches combined with
machine-learning techniques, we integrated multisource remote
sensing, land surface models (LSMs) and global climate model
results (Supplementary Tables 2 and 3) to provide a benchmark
of observed TWS changes over the past two decades (2002-2020)
and projections over the next four decades (2021-2060). Climatic
mechanisms (precipitation, air temperature and surface short-wave
radiation) underlying the historical and future TWS changes were
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Fig. 1| Lakes, glaciers and major river basins on the TP. Endorheic basins are shown in light purple and exorheic basins in light yellow. Bar plots show
TWSC for each basin (only basins with TWS trends >1.0 Gt yr™ are shown) during 2002-2017, estimated from the GRACE JPL-M solution. Blue bars
represent mass gain; red bars represent mass loss. Bar sizes represent the magnitude of TWSC (Gtyr™). DEM, digital elevation model.

examined to better understand the response of TWS to a chang-
ing climate. Moreover, we assessed the vulnerability of water-supply
security caused by storage changes by the mid-twenty-first century
(up to 2060) in a preliminary attempt to reveal potential threats to
water security in key Asian basins (Methods and Supplementary
Fig. 2). Recognizing that projected climate trends over the TP
show slight differences among different forcing scenarios under the
shared socioeconomic pathways (for example, SSP1-2.6, SSP2-4.5
and SSP5-8.5) by the mid-twenty-first century (Extended Data
Fig. 1), we selected the mid-range forcing scenario, SSP2-4.5, from
the Coupled Model Intercomparison Project phase 6 (CMIP6) data-
base for the purpose of detailed projections.

TWSC over the past two decades

During the GRACE observation period (April 2002-June 2017),
four solutions of top-down GRACE observations (CSR-M (Center
for Space Research-mascon), JPL-M (Jet Propulsion Laboratory-
mascon), CSR-SH (spherical harmonics) and JPL-SH) gener-
ally show significant decreases in TWS in the exorheic basins
and increases in the endorheic basins (Extended Data Fig. 2).
However, there are large discrepancies in the magnitude of the
TWS changes (TWSC) from different GRACE solutions, particu-
larly in the endorheic Tarim and Inner TP basins (Extended Data
Fig. 3). In general, TWSC for the two SH solutions are similar but
differ markedly from the two mascon solutions. We summed stor-
age changes in glaciers, lakes and subsurface components to esti-
mate bottom-up TWSC (Supplementary Table 4) and found good
agreement between TWS trends derived from the top-down JPL-M
analysis and those derived from the bottom-up approach in most of
the study regions (9 out of 10) (Fig. 2 and Supplementary Table 5).
Using bottom-up TWSC as a reference, an important advantage of
JPL-M is that it successfully detects significant increases in TWS
over the endorheic region (particularly in the Inner TP), where
SH and mascon solutions show opposite trends relative to each

other. In most cases, JPL-M displays the greatest magnitudes for
both decreasing and increasing trends (Supplementary Table 5).
However, the consistency between TWSC from JPL-M and from
the bottom-up approach here indicates that JPL-M probably pro-
vides reliable estimates for regions that are vulnerable to dimin-
ished water resources, contrasting with previous studies suggesting
it overestimates TWSC?*.

TWS over the entire TP decreased by 10.2 Gtyr™ (P<0.05) dur-
ing the GRACE period (2002-2017) on the basis of JPL-M, reflect-
ing the balance between a decreasing trend in the exorheic region
(—15.8Gtyr'; P<0.05) and an increasing trend in the endorheic
region (5.6 Gtyr'; P<0.05). Significant TWS declines were attrib-
uted mainly to glacier retreat over the Hindu Kush-Himalayan-
Nyaingentanglha mountains (for example, —10.1 Gtyr™ across the
Indus-Ganges-Brahmaputra region), and the subsurface deple-
tion that may be associated with degradation of seasonally frozen
ground” (for example, —1.8 Gtyr™ across the Salween-Mekong
basins). However, large increases in TWS were caused by lake expan-
sion (for example, 5.8 Gtyr ! in the Inner TP basin) and glacier mass
gain across the Karakoram and Western Kun Lun Mountains (for
example, 0.9Gtyr" in the Tarim basin) (Supplementary Table 6).
Water-storage changes over the TP are highly linked to downstream
water availability (for example, melt water for irrigation**’) and nat-
ural disasters (for example, glacier collapse’ and lake outburst’*).
Patterns of TWSC in individual basins and associated threats are
comprehensively discussed in Supplementary Section 1.

Future TWSC under climate change

Under a mid-range forcing scenario (SSP2-4.5), the magnitude
of projected TWS trends in most TP basins is greatly reduced by
the mid-twenty-first century, while the Amu Darya and Indus
basins may continue to experience ongoing significant TWS losses
(Fig. 3a-c and Extended Data Fig. 4). In the coming decade
(2021-2030), the Amu Darya basin may emerge as a hotspot of
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Fig. 2 | Component contributions and agreement in water-storage
changes. The study region and the GRACE solution that agrees best with
the bottom-up derived TWSC in each region are presented in each row.
Four box columns on the left indicate contributions of different storage
components (including glacier, lake, surface and subsurface water storages;
shown at the bottom) to TWSC by different colour saturations. Two circle
columns on the right show rates of TWSC, where circles without a centre
mark represent those derived from the bottom-up approach and circles
with a centre mark represent those derived from the top-down approach.
Circle size indicates area of each study region.

water-storage depletion with the magnitude of TWS decrease
(1.2+0.5Gtyr; P<0.05) about twice as large as that during the
GRACE period (2002-2017; 0.7 Gtyr™). The projected TWS trend
for the Indus basin (—5.7+0.7 Gtyr™; P<0.05) is similar in magni-
tude to that during the GRACE period (—4.8 Gtyr™'), whereas the
spatial extent of TWS declines becomes larger (Fig. 3b). In contrast
to the Amu Darya and Indus basins, other regions over the TP show
reduced trends or unchanging TWS in the coming decade. By the
mid-twenty-first century, most areas over the TP show little trend
in TWS with the exception of slight TWS declines in the Indus
basin. The large decrease in projected TWS over the Amu Darya
basin during the coming decade (2021-2030), in particular, does
not extend to the mid-twenty-first century (Fig. 3c). This indicates
that TWS approaches a new equilibrium after decades of glacier
retreat, lake expansion and frozen soil degradation. This conclusion
is supported by separate projections of glacier mass balance*, indi-
cating that glacier melt in major river basins on the TP (for example,
Brahmaputra and Ganges) peaks over the next two decades fol-
lowed by a decrease.

Although TWS trends are weakened, we found large climate
change impacts on TWS over the TP by the mid-twenty-first cen-
tury (Fig. 3d). TWS is projected to decline substantially from the
early (2002-2030) to mid (2031-2060) twenty-first century in the
Amu Darya and Indus basins with losses of ~23 Gt (equivalent to
18 cm for basin-averaged water depth) and ~105 Gt (33 cm), respec-
tively. In addition, the Ganges-Brahmaputra and Salween-Mekong
basins show mass losses of ~66 Gt (14cm) and ~26 Gt (13 cm) by
the mid (2031-2060) twenty-first century relative to the 2002-2030
period. Slight mass gain of ~6 Gt is projected in the endorheic
Tarim-Inner TP-Qaidam basins. However, the magnitude of this
mass gain is likely to be compensated by the large TWS decline over
the entire TP, with a net mass loss of ~230 Gt by the mid-twenty-first
century. Compared with TWSC in the past two decades, the greatest
threats to future water resources are found in the glacier-dominated
Amu Darya and Indus basins. Subsurface-dominated TWSC
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(the Salween-Mekong region) and lake-dominated TWSC (the
Inner TP basin), by contrast, are projected to be relatively stable.

The combined effects of climate drivers, including precipitation,
temperature and surface short-wave radiation, generally explain
projected TWS variations in the future. Most areas over the TP
show stable annual precipitation between the early (2002-2030) and
mid (2031-2060) twenty-first century. Important exceptions are the
Ganges-Brahmaputra and Salween-Mekong regions, both of which
show increases (Fig. 3¢). Precipitation in the Ganges-Brahmaputra
basin shifts from displaying a decreasing trend in the early
twenty-first century (Box 1; Extended Data Fig. 5) to an increasing
trend by the mid-twenty-first century (Fig. 3e). Increases in precipi-
tation tend to dampen TWS declines in the Ganges-Brahmaputra
and Salween-Mekong regions. The entire TP is projected to see a
warming trend without obvious hotspots (Fig. 3f). However, both
the Amu Darya and Indus basins may be more sensitive to pro-
jected warming because they have experienced stable or slightly
decreasing trends in temperature over the historical period (Box 1;
Extended Data Fig. 5). These findings are generally consistent with
glacier projections by Rounce et al.** showing that glaciers over the
Eastern Himalayas (the Brahmaputra basin) are likely to experience
less mass loss than those in other TP regions, while the Pamir-Alay
(the Amu Darya basin) is projected to see greater mass loss in the
future. Surface short-wave radiation mainly impacts changes in gla-
cier mass balance in the Tarim basin (Box 1), and stable short-wave
radiation by the mid-twenty-first century could explain the slight
TWSC in this case (Fig. 3g).

Potential threats of future water supply

The TP is an important source region of freshwater for down-
stream areas, and water storage over the TP provides a buffering
capacity for water resources by supplying glacier melt water dur-
ing hot and/or dry years. However, climate change could deplete
TWS and weaken upstream water-supply capacity, which may
threaten downstream water availability. In this Article, we quanti-
fied the vulnerability of water supply for downstream basins caused
by upstream storage changes under the mid-range forcing scenario.
The Amu Darya basin and seven exorheic basins (Indus, Ganges-
Brahmaputra, Salween-Mekong, Yangtze and Yellow) were selected
for this analysis because of large populations and water demand in
the downstream areas. Irrigation, industrial, and domestic water
demands were summed to total water demand (D) for downstream
areas. Two sources of water supply, natural supply capacity (NSC,
defined as precipitation minus actual evapotranspiration (ET)) and
storage supply capacity (SSC, defined as TWS over the upstream
areas) were considered (Methods). We found that in the Ganges-
Brahmaputra, Salween-Mekong and Yangtze basins, total water
demand in the downstream areas can be met by downstream NSC
(NSC,) (Supplementary Table 7). This means that in these basins,
changes in SSC from upstream water towers may not seriously
threaten downstream water availability.

However, the Amu Darya and Indus basins could be highly
dependent on upstream SSC because water demand in populated
downstream areas cannot be met by NSC, (Supplementary Table 7).
This is generally consistent with previous studies on the impact
of warming-induced changes in melt water in the region; that is,
the Indus is more vulnerable to glacier loss than is the Ganges-
Brahmaputra®, and the Amu Darya is highly dependent on snow
melt”. Over these two basins, future water demand during the
mid-twenty-first century (2031-2060) remains generally stable rela-
tive to demand during the early twenty-first century (2002-2030),
attributed to the slight decrease in irrigation water use but the
increase in industrial and domestic water demand (Supplementary
Fig. 3). Future natural supply (NSC in upstream and downstream
areas) is also relatively stable during the 30yr averaged period,
although interannual variability exists.



NATURE CLIMATE CHANGE

a D
3 8
S
2 &
c
= =1
z 13
[
3 o =
2 %}
S -1g
o
_2"8‘
<
-3 u
b
3'U
S.
2 2
s g
z 1
2 s
3 0 &
2
5 -1 3
E
_2~<
=
,_Sv
c
o
Qo
[0
Q
g
z -
< =
% 0(2
|
3 2
-1 o
3
=<
)

Longitude (° E)

d

Latitude (° N)

Latitude (° N)

Latitude (° N)

Latitude (° N)

(wuw) uoneydioaid
pabeiane JA Og Ul 8oUBIBHIA

(D,) @inyesadway
pabeiane JA Og Ul 8oUBIBYHIA

(;-w M) uonelpes
pabeiane JA Og Ul 8oUBIBHIA

(wo) smL
pabelane JA Og Ul @ouaIBKIa

Longitude (° E)

Fig. 3 | Reconstructed and projected changes in water storage and climate drivers. a-c, Spatial patterns of linear trends in machine-learning
reconstructed and projected TWS on the Tibetan Plateau during the past two decades (2002-2020) (a), the coming decade (2021-2030) (b) and the
mid-twenty-first century (2031-2060) (c). Stippling in a and b marks regions that have a significant trend (the Mann-Kendall test at a 5% significance
level). d-g, The difference between the 30 yr averaged state for the 2031-2060 period relative to the average for the 2002-2030 period in projected TWS
(d), annual precipitation (e), annual average temperature (f) and annual surface short-wave radiation (g). All results were estimated from the ensemble

mean of nine CMIP6 models under the mid-range SSP2-4.5 scenario.

In contrast to the stable water demand and NSC, the large decline
in SSC could represent a major threat in the future. Taking total water
demand during the early twenty-first century (2002-2030) as the
baseline, projected SSC declines are up to 119% (Amu Darya) and
79% (Indus) of the demand baseline until the mid-twenty-first cen-
tury (2031-2060) (Fig. 4). In particular, if assuming the same con-
tribution of changes in surface water storage to TWSC between the
future and GRACE period, the decline in surface SSC (SSCs) could
account for 105% and 72% of the demand baseline, respectively.

Given that surface water directly contributes to glacier melt water,
such large declines in SSCs should amplify future water shortages in
these two hotspots. More alternative water-supply sources, including
increased groundwater extraction and more water transfer projects,
may be required to meet future water demand. Given the existing
large groundwater depletion®, rapidly growing population’” and
considerable hydro-political tension* along the Amu Darya and
Indus rivers, our findings highlight the potential for largely amplified
water crises and the importance of protecting these two water towers.
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Box 1| Impacts of climate drivers on TWSC

Climate mechanisms underlying historical TWSC during 2002-
2017 are related to changes in monsoon-dominated precipitation
and warming-induced precipitation phase and different roles in
temperature rising and surface short-wave radiation across the TP
(see Supplementary Section 2 for more details). Significant TWS
declines over the Ganges-Brahmaputra basins may be jointly ex-
plained by decreases in precipitation due to the recent weakening
of the South Asia Summer Monsoon and rising temperatures, es-
pecially in winter. For the Indus basin, although it is less affected
by the South Asia monsoon and annual precipitation shows little
change, we find decreases in winter precipitation. Salween-Me-
kong has undergone a warming trend that may largely drive TWS
declines, resulting in not only the negative glacier mass balance,
but also depletion in subsurface water storage related to degrada-
tion of seasonally frozen ground.

Despite a warming trend over the Tarim basin, the
decreasing trend in surface short-wave radiation, particularly
across the Karakoram and Western Kun Lun mountains,
is more important in driving glacier mass gain over this
region. In the Inner TP, annual precipitation features an
increasing trend in the north but a decreasing trend in the
south, which shows a consistent spatial pattern with TWSC.
Both annual precipitation and average temperature remain
almost stable in the Amu Darya basin, protecting glaciers
here from rapid retreat relative to what happened over the
Indus-Ganges-Brahmaputra region. Moreover, we find a
warming-induced change in precipitation phase from snowfall
to rainfall over the Indus, Ganges-Brahmaputra and Amu Darya
basins, which could be related to large glacier retreat during
past decades.

a b
800 -4.0 9.0 - 1,600 0.5 9.0 -
£ [ g Lo 4 &
£ 600 F-5.0 3 85 £ 1,200 4 3 85 &
g L 55 8 S ¢ L 05 3 S
E=] 4 F — ) = = B ) =
5 400 6.0 g. 8.0 2 B 800 | 10 =80 3
a 65 3 © 3 Y3 g
2 o S — =
8 200 L-70 3+ 75 3 400 4 L 15 S 75
o Ll 75 = 3 o - 3
0 NSNS I A e i 5.0 7.0 0 ———————————— 20 70
2001 2003 2005 2007 2009 2011 2013 2015 2017 2001 2003 2005 2007 2009 2011 2013 2015 2017
Year Year
c d
-2.0 8.5 - 750 -3.0 8.5 -
1,000 ~ . L35 3z
3 r =25 @ 8 E L-40 & 80 o
£ 800 A L 30 3 80 8 g l_45 3 0 5
g S 1) 500 =} o
s L35 @ 5 5 50 B S
S 600 A o 75 = = F-55 98 75 =
£ 40 £ | T g £ le0E |~ 2
S 4001 | 45 8 z 2 250 L-65 2 =
3 3 t70 & 8 Sogdr7o ¢
& 200 | 50 & 3 o [ = 3
‘ 2 F-75 @
0 T T T T T T T T -5.5 6.5 0 T T T T T T T T -8.0 6.5
2001 2003 2005 2007 2009 2011 2013 2015 2017 2001 2003 2005 2007 2009 2011 2013 2015 2017
Year Year
e f
300 -3.0 8.0 400 -3.0 8.5
£ 250 [0 g - 3 g
€ ] - —4.0 =3 € +—-4.0 e
E 004 [ 45 3 2 E 3007 [ 45 3 2
s L-5.0 B 3 s L-50 8 E
= 1501 F-55 % 75 = = 200 A F-55 2 80 =
c o c o
5 6.0 3 © 3 +-6.0 3 3
g 1001 L 6.5 ~ £ 3 F-65 ~ =
e L 70 & 3 £ 1001 L70 O 3
o 50 A L 75 = 2 o [ 75 = 2
0 T T T T T T T T -8.0 7.0 0 T T T T T T T T -8.0 7.5
2001 2003 2005 2007 2009 2011 2013 2015 2017 2001 2003 2005 2007 2009 2011 2013 2015 2017
Year Year
Precipitation Temperature Radiation

Annual variations in climate drivers of key basins during 2002-2017. a-f, Annual precipitation (light blue bars) is shown on the left y axis; annual
average 2 m temperature (red lines) and annual surface short-wave radiation (black lines) are shown on the right y axis. Shadow region of the inserted
Tibetan Plateau boundary on the top-left corner denotes geographical location of each river basin: Indus (a), Ganges-Brahmaputra (b), Salween-
Mekong (c), Amu Darya (d), Tarim (e) and Inner TP (f). Red shadows represent regions showing decreases in TWS, and blue shadows represent

regions showing increases in TWS.

The Yellow basin also depends on upstream water supply
because the downstream water demand cannot be fully met by NSC,
(Supplementary Table 7). However, future water supply caused by
changes in upstream storage may be optimistic because we find an
increase in SSC of 7% and in SSCs of 6% relative to the baseline
water demand (Fig. 4). Although the future water demand increases
by 5%, the total supply capacity (summing NSC,, NSC; and SSC)
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increases by 4%. This indicates that the supply-demand balance
may be stable in the Yellow basin in the future.

Discussion

This study investigates climate impacts on past and projected future
TWSC over the TP, providing insights into hydrologic processes
impacting high-mountain freshwater supplies that serve large
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Fig. 4 | Projected changes in water demand and supply capacity in key Asian basins. Percentage shows the change between future and present total
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(2031-2060), and the present period is defined as the early twenty-first century (2002-2030). The water-demand baseline was estimated as the

average total water demand during the 2002-2030 period.

downstream Asian populations. Exorheic TP basins are seen to
be most impacted by warming and precipitation decreases related
to weakening of the South Asia Summer Monsoon. However,
endorheic basins have undergone a wetting climate combined with
decreases in surface short-wave radiation since the early twenty-first
century. The entire TP is projected to experience a warmer climate
by the mid-twenty-first century.

Climate change in recent decades has led to severe depletion in
TWS over the entire exorheic basins (—15.8 Gtyr™') but substantial
increases in TWS across the entire endorheic basins (5.6 Gtyr™).
These differential trends reflect the competing effects of glacier
retreat, degradation of permafrost and seasonally frozen ground,
and lake expansion that are confirmed by multisource remote
sensing and land surface model output. These TWSC impact not
only water availability (for example, melt water for irrigation), but
also natural disaster risk (for example, glacier collapse and glacier
lake outburst), threatening compound hydro-political tensions in
densely populated downstream areas.

Future TWS projections under the mid-range SSP2-4.5 emis-
sions scenario suggest that the entire TP could experience sub-
stantial TWSC with a net loss of ~230 Gt by the mid-twenty-first
century (2031-2060) relative to an early twenty-first-century
(2002-2030) baseline. Solid-water resources are likely to diminish,
particularly over the Amu Darya and Indus basins, where precipi-
tation is projected to be stable while temperature is projected to
rise substantially until the mid-twenty-first century. Excess water
loss, particularly the severe reduction in solid-water resources,
represents a major threat to the stability of two such vulnerable
water towers. The decline in upstream supply capacity caused
by TWS loss could be up to 119% and 79% of the downstream
water-demand baseline in the Amu Darya and Indus basins,
respectively. More alternative water-supply sources, includ-
ing increased groundwater extraction and more water transfer

projects, may be necessary to meet the amplified water shortage
in the future.

This study also reveals potential advances in using satellite-based
observations and data-driven approaches in hydrologic applica-
tions. Combining multisource remote sensing and ensemble mean
of LSMs, this study represents an advance relative to previous
studies, most of which have neglected evaluation of the constitu-
ent contributions to TWSC. In contrast to model-based analysis,
data-driven approaches improved inherent limitations in most
hydrologic models that exclude water-storage changes in aqui-
fers and largely underestimate TWS trends (see Supplementary
Section 3 for further discussion on advantages of machine-
learning-based projection).

Despite caveats and uncertainties (Methods) associated, for
example, with the extrapolation of relationships established using
machine-learning algorithms trained on relatively short datas-
ets, this study identifies hotspots in Asian water towers that are
at risk under projected climate change. By examining the interac-
tions between climate change and the terrestrial water system, our
study aims to inspire future research and management for govern-
ments and institutions towards improved adaptation strategies in
coming decades.
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Methods

Top-down terrestrial water-storage change. Top-down observations for monthly
TWS anomaly (TWSA) during April 2002-June 2017 and June 2018-May 2020
were derived from four GRACE and GRACE-FO solutions*: two mascon solutions
(JPL-M and CSR-M) based on the latest versions of Release Number 06 (RL06)
and two spherical harmonics solutions (JPL-SH and CSR-SH) that are from the
versions of RL05. JPL-M and CSR-M data are represented on a nominal resolution
of 0.5° and 0.25°, respectively. However, JPL-M represents 3° X 3° equal-area caps
of its native resolution whereas CSR-M represents the equal-area geodetic grid

of 1°x 1° at the Equator. Two SH products have a nominal resolution of 1°x 1°

by applying a 300-km-wide Gaussian filter. However, two neighbouring grid

cells of SH products are dependent because of the applied spatial smoothing. All
reported GRACE data are anomalies relative to the 2004-2009 time-mean baseline.
Missing monthly TWSA during the GRACE period (April 2002-June 2017) caused
by instrument failure was linearly interpolated using the nearest two monthly
estimates. From the gap period between the GRACE and GRACE-FO missions
(July 2017-May 2018), we used machine learning to reconstruct TWSA for each
grid cell over the TP. The top-down TWSC can be calculated as the backward
difference in TWSA (equation (1)):

TWSA (f) — TWSA (f — 1)

ATWS/At =
At

(Y

where t indicates the sequence in monthly TWSA series, and At is estimated as one
month to be consistent with the temporal resolution of GRACE observations.

To examine long-term trends in TWS variations, we decomposed TWSA time
series into the following components® (equation (2)):

Stotal = Slongfterm + Sseasonal + Residuals (2)

where the original signal (S,,,) was decomposed into long-term variability
(including linear trend and interannual variability), seasonal amplitudes and
residual components. TWS trend was determined from the slope by applying
linear regression to the long-term signal. The non-parametric Seasonal-Trend
decomposition procedure based on Loess (STL) approach through a locally
weighted regression was used for decomposition'', which is a robust, a
computationally efficient, and the most commonly used approach for detecting
nonlinear patterns in GRACE datasets**.

The variance of each temporal component in equation (2) was divided by the
variance in the raw time series to estimate relative contributions of each temporal
component to the total signal*. In addition, the coefficient of determination of the
regressed linear trend time series was calculated as a useful piece of evidence to
reflect the strength of the linear trends relative to short-term variability*.

Bottom-up terrestrial water-storage change. TWSC were partitioned into changes
in surface (including glacier and lake storages) and subsurface components.
Sources of uncertainty in bottom-up TWSC include mainly inconsistencies

and different spatial resolutions among various datasets, uncertainty from each
component estimation and the neglect of some minor forms of water storage (see
Supplementary Section 4 for detailed discussions).

Changes in glacier water storage. The total rate of glacier volume change was
calculated as the sum of the mean rate of elevation change multiplied by the
area of the glacier mask for each 100-m-elevation band. The rate of volume
change was converted to the rate of glacier mass change using a conversion factor
(equation (3)):

AM — ( in:l Ah, X Al) X p (3)

A

where AM is the rate of total glacier mass change; Ah; is the rate of elevation change
for each 100-m-elevation band; A is the glacier area, subscript i represents the area
for each 100-m-elevation band; and p is the average density of the glacier (or the
volume-to-mass conversion factor), which equals 850 kgm= according to ref. .

For rates of elevation change, we used those during the 2000-2016 period
provided by Brun et al.'® that cover 92% of the glacierized area in High Mountain
Asia. Here we assumed that changes in glacier water storage during the 2000-2016
period can approximate those during the 2002-2017 period. For a given spatial
unit, the elevation-change rate on glaciers was calculated for each 100-m-elevation
band as the mean of all pixels belonging to this band. If no data were available for
an elevation band (for example, the uppermost reaches), a zero value was assigned
to the elevation-change rate. The glacier mask was determined by the latest
Randolph Glacier Inventory (RGI 6.0).

Changes in lake water storage. Changes in lake water storage over the TP except
the Inner TP and Qaidam basins were provided by Li et al.”’. Combining multiple
altimetric missions and optical remote-sensing images, the resulting high-temporal
resolution (monthly) datasets help resolve interannual and intra-annual variability
and trends in lake water storage. Storage variations for 52 large lakes (>100 km?
accounting for ~60% of the total TP lake area) during the 2000-2017 period are

available at weekly to monthly timescales. The estimated uncertainty in the water
level is ~0.1 m on the basis of rigorous examination of both field experiments and
theoretical verification. Uncertainty in lake storage trends is ~6% for the entire TP
through uncertainty propagation. The Inner TP and Qaidam basins contain a large
number of small lakes; therefore, we used the latest dataset from Wang et al.",
which covers 930 lakes in the Inner TP basin and 46 lakes in the Qaidam basin
(>1km?). This dataset is based on Landsat-derived annual lake area changes

and digital elevation model (DEM)-derived lake elevation-area relationships
(hypsometric curves). Despite discrepancy in relatively small lakes, lake storage
changes from Wang et al.* are overall consistent with those from Li et al.”' in

40 overlapping lakes; that is, 26 overlapping lakes between the two datasets have
correlation coefficients higher than 0.8.

Changes in subsurface water storage. To estimate changes in subsurface water
storage, we incorporated the latest estimates from three LSMs: NOAH -3.6
(0.25°%0.25°) and VIC-4.1.2 (1°x 1°) from Global Land Data Assimilation
System 2.1 (GLDAS-2.1) and CLSM-F2.5 (0.25° X 0.25°) from GLDAS-2.2. Here
we summed storage for each depth interval to represent total subsurface water
storage (four layers of soil water for NOAH, three layers of soil water for VIC,

and root zone soil water and groundwater for CLSM). Differences in modelled
subsurface depths were not considered. For each model, subsurface water-storage
anomalies were calculated by subtracting the 2004-2009 time-mean baseline to be
consistent with GRACE data. In addition, subsurface water-storage anomalies were
decomposed using the STL approach, and the storage trend was determined by
applying linear regression to the decomposed long-term variability. Finally,

we calculated the mean trends of three LSMs for each basin. Note that CLSM
generates outputs since 2003, and thus we assumed that CLSM-based changes

in subsurface storage during the 2003-2017 period can approximate those during
the 2002-2017 period.

Reconstruction and projection of TWSA using machine learning. We used
machine-learning-based artificial neural network (ANN) models to train

and predict TWSA for each grid cell (0.5°) on the TP during the gap period
between the GRACE and GRACE-FO missions (July 2017-May 2018) and up
to the mid-twenty-first century until 2060. Machine learning was selected over
hydrologic models because (1) the latter do not include some of the aquifers
and greatly underestimate the linear trends in TWSA'* (see Supplementary
Section 3 for detailed discussion) and (2) machine-learning approaches

can efficiently model nonlinear relationships between inputs and outputs*.
Machine learning has been successfully applied to reconstruct GRACE data

(or more precisely, GRACE-like data)*****. However, we acknowledge that
TWSA reconstruction over the high-mountain TP is challenging due to the
complex relationship between climate forcing and water storage. Most previous
machine-learning studies relied on monthly precipitation, temperature and
modelled soil water storage for reconstructing GRACE-like TWSA, which could
have good performance in humid regions but poor results over glacierized areas
in the TP*" (see Supporting Section 3).

To explore the potential of machine-learning approaches in reconstructing
and projecting TWSA over the TP, we improved the input layer on the basis of the
water balance principle (input fluxes - output fluxes =TWS changes). Although
machine learning does not explicitly show physical processes, hydrologic principles
could be used in the input layer to improve its performance. TWS can be calculated
using equation (4):

TWS, = TWS, + ATWS, + ATWS, + - - - + ATWS,
= TWSy + (fluxm,1 — fluxou,1) + (fluxm,, — fluXoy2)
+ -+ (luxin, — fluXous) (4)
= TWSo + (fluxm, + fluxpz + - - - + fluxm )
— (fluxou1 + fluxouz + - - - + fluXous)

Equation (4) implies that the state variable (TWS) is affected by accumulated
flux variables in a given period. Thus, combining accumulated flux variables and
related state variables could be one reasonable way for predicting target TWS using
machine learning. Here the target variable was GRACE-derived TWSA estimated
from JPL-M due to its good agreement with bottom-up TWSA as illustrated in the
preceding. The forcing data (predictors) of the input layer included bias-corrected
precipitation, air temperature and surface short-wave radiation derived from nine
CMIP6 models and simulated TWS from the latest CMIP6 CESM2-WACCM
model. Flux variables (precipitation and surface short-wave radiation) were
accumulated for the previous period ahead of the projected time, whereas state
variables (air temperature and modelled TWS) were directly input. All input
variables were divided into the historical (2002-2020) and future (2021-2060)
periods for bias correction. They were normalized by subtracting the 2004-2009
time-mean baseline to be consistent with the target variable (GRACE TWSA).

The risk of overfitting using overly complex machine-learning models
requires caution because the number of target data is relatively small (GRACE
and GRACE-FO observations of 207 months in total; April 2002-May 2020

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange
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except the gap period of July 2017-May 2018). Therefore, we chose the basic
machine-learning structure (ANN) and strictly set only one or two hidden

layers with four neurons for each layer. The small number of hidden layers and
neurons could effectively reduce the risk of overfitting from the model structure.
In addition, the ANN models were trained at the 0.5° grid-cell scale (rather than
the basin scale) over the TP, indicating that we built 1,191 different ANN models
over the TP. For each grid cell, the forcing and target data during the periods with
GRACE or GRACE-FO observations (207 months in total) were randomly divided
into training, validation and testing sets, accounting for ~70%, 15% and 15% of the
samples, respectively. The reconstructed TWSA at the 0.5° grid cell was spatially
filtered using the disk-filtering method with a radius of three. This was to exclude
outliers, and the filtering radius considered the difference between the native

(3°x 3° equal-area caps) and nominal (0.5° X 0.5°) resolution of GRACE JPL-M.

As for TWSA projection, we assumed that the determined nonlinear relationship
between the input layer and target TWSA in the past could be transferable to the
future. Uncertainty in TWSA projection was estimated as +1 standard deviation
among outputs from different CMIP6 forcings.

The activation functions were ‘tansig), logsig’ and ‘purelin, which are the most
commonly used functions in the hydrologic field”. Model frameworks, activation/
transfer functions and optimization methods were tested to determine optimal
parameters on the basis of the Kling-Gupta efficiency (KGE)*** (equation (5))
between observed and modelled TWSA values of the testing samples.

KGE:1—\/(r—1)2+(ﬂ—1)2+(y—1)2 (5)

where 7 is the correlation coefficient that reflects the consistency in timing, f is

the bias ratio of the mean of the modelled values to the mean of the observations
and y is the variability ratio of the standard deviation of the modelled values to

the standard deviation of the observations. KGE is a comprehensive indicator of
performance that includes correlation, ratio of means and ratio of dispersion of the
two paired datasets, with a perfect fit indicated by a value of 1 on all metrics.

Corrections of forcing data derived from climate models. Climate forcings for
the ANN models, including precipitation, temperature and surface short-wave
radiation, were derived from nine climate models that have relatively high spatial
resolution (a nominal resolution of 100 km X 100km) from the CMIP6 database
(Supplementary Table 3). In addition, ET was derived from nine models to quantify
water-supply capacity. These data were obtained at the daily timescale from CMIP6
ScenarioMIP covering both historical (1980-2014) and future (2015-2100) periods
under the moderate forcing scenario (SSP2-4.5). Considering large systematic errors
in climate models due to the simplified physical processes and numerical schemes™,
bias correction is required for all datasets. Here global outputs from CMIP6 climate
models were resampled to 0.5°Xx 0.5° grid cells for matching the nominal resolution
of JPL-M datasets on the basis of the bilinear method. For each variable, daily
estimates were used in bias correction, and then the corrected data were averaged or
aggregated to monthly timescales. The baseline and prediction periods for correcting
climate model outputs were set as 2002-2020 and 2021-2060, respectively.

The delta approach was used to bias correct air temperature, surface short-wave
radiation and ET estimates in both baseline and prediction periods™, as given by
equation (6).

Te = Tm — (Tmp — Tretp) (©)

where T means the daily air temperature; subscripts c and m represent the
corrected data and modelled data derived from climate models, respectively;
subscript b refers to the baseline period (2002-2020); subscript ref represents the
reference data for bias correction, which is air temperature estimated from ERA5
reanalysis datasets™ in this study; and an overbar denotes the mean. Equation
(6) could also be applied to surface short-wave radiation and ET correction. The
baseline radiation datasets can be derived from ERAS5 reanalysis, and baseline ET
datasets can be derived from the Global Land Evaporation Amsterdam Model
v.3.5a (GLEAM v.3.5a) due to its good performance over the TP*.

A more sophisticated approach, quantile mapping (QM), was used for
bias correction for precipitation®’. This is because climate model outputs are
known to have a drizzle problem that shows many low-magnitude rain events
compared with observations®. In addition, climate models have difficulty in
capturing realistic interannual variability. The QM method includes calculation of
cumulative distribution functions (CDFs) for observed and modelled data during
the baseline period (equation (7)) and then uses a transfer function (equation (8))
for bias correction.

P, = h[Pp] (7)

PCZFJI{Fm[Pm]} (8)

where P refers to the daily precipitation; subscripts o, m and c represent the
observed, modelled and corrected precipitation, respectively; 4 is the function that
maps the modelled data to the same distribution as the observed data; F refers to
the CDF function; and F~' refers to the inverse CDF function. Here precipitation
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from the Integrated Multi-satellite Retrievals for GPM (IMERG) V06™ was
regarded as the observed data, and we used the empirical CDF of the observed and
modelled time series for regularly spaced quantiles. Due to significant seasonality
over the TP, we implemented the QM bias correction for precipitation month by
month, for example, as for bias correction for precipitation in January, all daily
precipitation in January during 2002-2020 and 2021-2060 was used to calculate
cumulative distribution functions for baseline and prediction periods, respectively.

Quantifying water demand and supply capacity. Conceptually, a high-mountain
water tower is deemed to be important when its water resources (liquid or frozen)
are plentiful relative to its downstream water demand and when its basin water
demand is high and cannot be met by downstream water availability alone'.
Here we considered human water demand for irrigation, industrial and domestic
purposes®, all of which were estimated under a mid-range scenario (SSP2 and
representative concentration pathway 6.0). Irrigation water demand was estimated
from actual irrigation withdrawal from a widely used global vegetation model
(Lund-Potsdam-Jena-managed land model) provided by the Inter-Sectoral Impact
Model Intercomparison Project portal. Industrial and domestic water demand
was provided from the International Institute for Applied Systems Analysis. These
datasets were widely used in examining supply—demand relationships'*”. Here we
considered only downstream water demand because (1) the population and water
use over the high-mountain TP are pretty low and (2) this study focuses on the
supply linkage between upstream water towers and downstream areas.

We considered three supply sources for downstream water availability:
NSC,, NSC, and SSC from upstream basins. Although other water sources, for
example, groundwater in downstream areas, can also be important, we focused
more on the impacts from upstream TWS changes and considered other sources
as the alternative water supply, similar to what Immerzeel et al.”* and Qin et al.”
conducted. NSC was defined as precipitation minus actual ET", indicating
water supply from the difference between water input and output fluxes. Both
precipitation and ET were derived from the ensemble mean of nine climate models
and corrected on the basis of IMERG and GLEAM products, respectively. SSC was
defined as TWS, the maximum water amount that can be used by downstream
areas. We assumed that the contribution of changes in surface storage to TWS
changes remains the same in the future as that during the GRACE period. Thus, we
could further quantify SSCs, which could be directly used by downstream areas.

Because GRACE estimated TWSA (anomalies relative to the mean of
2004-2009) rather than the absolute TWS, here we focused on changes in NSC
and SSC in the future relative to the water-demand baseline. Taking average total
water demand during the early twenty-first century (2002-2030) as the baseline,
this study calculated the percentage of changes in mean annual supply capacity
during the mid-twenty-first century (2031-2060) relative to that during the early
twenty-first century (2002-2030) to the demand baseline. For example, the relative
change in SSC was calculated as: (SSC203172060 — SSC200272030) /D200272030A

Caveats and uncertainties. Among the caveats and uncertainties in our analysis
is the combination of different data sources, which makes formal uncertainty
estimation challenging. Inconsistencies among datasets and the neglect of some
forms of water storage also result in uncertainty in the bottom-up estimates

of TWS changes (Supplementary Section 4). The spatial resolution of GRACE
datasets is relatively coarse, resulting in added uncertainty in basin-averaged TWS
trends. In addition, although precipitation, temperature and surface short-wave
radiation are three critical climate drivers, additional mechanisms (such as ET®,
morphology® and the glacier state of debris cover'®) should be considered in local
studies. Finally, despite the skilful performance of the machine-learning approach
in capturing complex relationships among different variables, there is uncertainty
using such relationships for future projections owing to the potential limitations in
statistical stationarity assumptions.

Data availability

Shapefiles of hydrologic basin boundaries® used in this study are provided at
http://data.tpdc.ac.cn. GRACE and GRACE-FO data are provided by the NASA
MEaSUREs Program, where SH and JPL-M data can be accessed at https://grace.
jpl.nasa.gov/; and the CSR-M data can be accessed at http://www2.csr.utexas.
edu/grace. The elevation-change maps over the glacierized areas®* are provided
at https://doi.org/10.1594/PANGAEA.876545, and RGI 6.0 glacier mask can be
accessed at http://www.glims.org/RGI/. Datasets of lake storage changes'** are
available at https://doi.org/10.5281/zenodo.5543615 and https://doi.org/10.1594/
PANGAEA.898411. Data from GLDAS land surface models and IMERG
precipitation can be accessed at https://disc.gsfc.nasa.gov/. ERA5 reanalysis data
are available at https://cds.climate.copernicus.eu/. GLEAM ET data are available
at https://www.gleam.eu/. Data from CMIP6 models can be found at https://
esgf-node.llnl.gov/. Irrigation water demand is derived from the LPJml model
provided by the ISIMIP portal (https://www.isimip.org/outputdata/). Industrial
and domestic water demand is available on request from Y. Wada (wada@iiasa.
ac.at). Monsoon monitor results for generating Supplementary Fig. 8 are derived
at http://apdrc.soest.hawaii.edu/projects/monsoon/. Model-simulated TWS

for generating Supplementary Fig. 10 is available at https://www.isimip.org/
outputdata/. Reservoir information for generating Supplementary Fig. 18 can be
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accessed at https://globaldamwatch.org. Data for generating Supplementary Figs.
1, 6 and 11 are accessible on request from Y. Pokhrel (ypokhrel@egr.msu.edu),

G. Zheng (zhengguanhengl63@163.com) and Z. Sun (sunzhangli@gmail.com),
respectively. Projected TWS changes by the mid-twenty-first century, generated by
this study®’, are available at https://doi.org/10.5281/zenodo.6784501.

Code availability

All analysis was performed using functions in MATLAB. The key portions of the
computer code used to process the results and develop the figures® are available at
https://doi.org/10.5281/zenodo.6784641.
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Extended Data Fig. 1| Projected changes in climate variables over the Tibetan Plateau up to 2100. (a) Annual average temperature, (b) annual precipita-
tion, and (¢) annual surface short-wave radiation for the 2002-2100 period were estimated by the ensemble mean of nine CMIP6 models under SSP1-2.6,
SSP2-4.5, and SSP5-8.5 scenarios. Both temperature and surface short-wave radiation were bias corrected using the delta approach, and precipitation was
corrected using the quantile mapping approach. Shadows represent uncertainty range of +1 standard deviation among outputs from different models.
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Extended Data Fig. 2 | Trends in terrestrial water storage over the Tibetan Plateau during 2002-2017. Results were derived from four GRACE solutions,

thatis, (@) JPL-M, (b) CSR-M, (¢) JPL-SH, and (d) CSR-SH. Stippling marks regions that have a significant trend (the Mann-Kendall test at a 5%
significance level).
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Extended Data Fig. 3 | Terrestrial water storage anomalies and decomposed long-term variabilities. Monthly time series of (a-d) terrestrial water
storage anomaly (TWSA) and (e-h) long-term variability are shown in twelve basins during Apr 2002-Jun 2017. Solid lines are the mean of four GRACE
solutions (JPL-M, CSR-M, JPL-SH, and CSR-SH), and shadows represent +1 standard deviation among different solutions. In particular, TWSA derived
from different GRACE solutions in the Inner TP is shown in (i) as an example, where TWSA is shown in solid lines and long-term variability is shown in
dash lines.
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Extended Data Fig. 4 | Observed and projected terrestrial water storage anomalies. Red lines show GRACE observations from JPL-M during 2002-2017,
whereas blue lines show the ensemble mean of machine-learning outputs from nine CMIP6 forcings during 2002-2060 in the (@) Amu Darya and (b)
Indus basins. Shadows represent uncertainty range of +1 standard deviation among outputs from different CMIP6 forcings.
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Extended Data Fig. 5 | Trends in climate drivers over the Tibetan Plateau during 2002-2017. Precipitation, temperature, and surface short-wave radiation
are analyzed during (a-c) annual, (d-f) summer (June-August), and (g-i) winter (December-February) periods. Stippling marks regions that have a

significant trend (the Mann-Kendall test at a 5% significance level). Precipitation data were derived from Integrated Multi-satellitE Retrievals for GPM
(IMERG) V06, and temperature and radiation data were derived from reanalysis ERA5 data.
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