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Abstract The conventional approach to detecting and attributing climate change impacts on
extreme weather events is generally based on frequentist statistical inference wherein a null
hypothesis of no influence is assumed, and the alternative hypothesis of an influence is accepted
only when the null hypothesis can be rejected at a sufficiently high (e.g., 95% or “p = 0.05”) level
of confidence. Using a simple conceptual model for the occurrence of extreme weather events, we
show that if the objective is to minimize forecast error, an alternative approach wherein likelihoods
of impact are continually updated as data become available is preferable. Using a simple “proof-
of-concept,” we show that such an approach will, under rather general assumptions, yield more
accurate forecasts. We also argue that such an approach will better serve society, in providing a
more effective means to alert decision-makers to potential and unfolding harms and avoid
opportunity costs. In short, a Bayesian approach is preferable, both empirically and ethically.

1 Introduction

There is a growing body of research dealing with the issue of detecting and attributing the
impact of anthropogenic climate change on various types of weather and climate phenomena
(e.g., Stott et al. 2013; Bindoff et al. 2013). In recent years, attention has turned in particular to
the impact climate change may be having on extreme weather phenomena (Trenberth 2011;
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Allen 2011; Blanchet and Davison 2011; Peterson et al. 2012; Otto et al. 2012; Cooley et al.
2007; NRC 2016). The traditional approach in these studies involves the use of parallel model
simulations that alternately have and have not been subjected to anthropogenic increases in
greenhouse gas concentrations. If a particular phenomenon of interest (e.g., record heat, heat
wave duration, droughts, floods, or active tornado or hurricane seasons) is found to occur
sufficiently more often in the latter case than in the former, it is concluded that a change has
been detected and can be attributed to the impact of climate change. Among other assumptions,
this approach assumes that the models capture the full range of processes that may impact the
occurrence of extreme weather events. That assumption has been disputed by some leading
scientists (Francis and Vavrus 2012; Trenberth 2011, 2012; Trenberth et al. 2015) and has long
been recognized as a problem in all modeling (Oreskes et al. 1994).

Some researchers have proposed a Bayesian framework for climate change detection and
attribution (Berliner et al. 2000), while other researchers have used approaches (see Hegerl et al.
2010) that sidestep the detection step or, e.g., employ fractional attributed risk (“FAR”; see, e.g.,
Bellprat and Doblas-Reyes 2016) which can avoid the assumptions of frequentist statistics in
climate change attribution. Nonetheless, numerous recent studies (IPCC 2013; Allen 2011;
Herring et al. 2015) have continued to invoke a frequentist detection and attribution approach
wherein a null hypothesis of no impact is invoked, and rejection of the null hypothesis and
alleged detection and attribution of a climate change impact demands rejection of the null
hypothesis at a high level of likelihood (e.g., p = 0.05 or p = 0.10). To quote the most recent
IPCC chapter on Detection and Attribution (emphasis added by us), “Attribution results are
typically expressed in terms of conventional ‘frequentist’ confidence intervals or results of
hypothesis tests: when it is reported that the response to anthropogenic GHG increase is very
likely greater than half the total observed warming, it means that the null hypothesis that the
GHG-induced warming is less than half the total can be rejected with the data available at the
10% significance level. Expert judgment is required in frequentist attribution assessments, but its
role is limited to the assessment of whether internal variability and potential confounding factors
have been adequately accounted for, and to downgrade nominal significance levels to account
for remaining uncertainties. Uncertainties may, in some cases, be further reduced if prior
expectations regarding attribution results themselves are incorporated, using a Bayesian ap-
proach, but this is not currently the usual practice.”

This philosophical approach to hypothesis testing—i.e., the frequentist framework—is
widespread in the scientific community and it is common to many physical and social
scientific disciplines. Indeed, it is so pervasive that some practitioners conflate it with “the
scientific method,” and consider it inappropriate even to question whether it provides an
appropriate interpretational framework for all scientific hypotheses (see Curry 2011; Allen
2011). Yet, despite the sense that it is deeply engrained in the history of science, its roots are
rather shallow, with widespread adoption of the practice dating back only to the 1940s
(Gigerenzer et al. 1989). Scientists in several fields are increasingly re-examining the appro-
priateness of the frequentist approach to hypothesis testing (Nuzzo 2014).

Some have argued that this philosophical framework is a by-product of the intrinsic conser-
vatism of the scientific discipline, reflecting a tendency among scientists for “least drama” in
drawing inferences and conclusions (Brysse et al. 2013; Anderegg et al. 2014). In practice, this
approach embraces (see Lloyd and Oreskes, in review) a subjective preference for risking type 2
errors of statistical inference (failure to reject a false null hypothesis, i.e., “false negative”) over
type 1 errors (rejecting a true null hypothesis, i.e., “false positive”). In the context of climate
science, it is likely that attacks on scientists by critics, and the ensuing phenomenon of “seepage,”
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whereby scientists are induced to be cautious for fear of being a target of politically-motivated
criticism (Lewandowsky et al. 2015), reinforces this latent tendency.

However, in many areas of biomedicine and in pharmaceutical testing, where the principle of
“first, do no harm” prevails, the standard practice (and in some cases legal requirement) is to
assume harm until safety can be demonstrated (Gigerenzer and Edwards 2003). With human-
caused climate change, there is a potential for greatly increased damage and loss of life, and
inaction comes at a large potential societal cost. In this regard, one may argue that climate change
attribution is more like biomedicine than it is, for example, like experimental psychology. Because
of the potential for harm, the overly conservative frequentist framework is ethically concerning.

An alternative Bayesian framework (Berliner et al. 2000) has been proposed wherein one
employs as a statistical prior, the evidence that exists—either theoretical or observational in
nature—that climate change may be impacting the underlying statistical distribution of the
climate variable/s of interest. (Indeed, the alternative Bayesian framework was advocated
decades ago in the field of clinical pharmacology, e.g., Berry 1987). In the case of impacts
on extreme weather, some researchers (Trenberth 2011, 2012, Trenberth et al. 2015; Lloyd and
Oreskes (in review)) have proposed that one employs a conditional approach, by accepting a
priori relevant physical principles regarding the relationship between climate and extreme
weather. For example, the demonstrated warming of the planet has increased the likelihood of
daily heat extremes (Meehl et al. 2007). Moreover, it has fundamentally intensified the global
hydrological cycle, increasing overall levels of atmospheric humidity and the potential for
extreme precipitation events (Trenberth et al. 2015). These considerations provide theoretical
and mechanistic reasons—one might say priors—to believe that climate change is likely to be
impacting extreme weather events. In sum, the Bayesian framework has the advantage, in
detection and attribution practices, of having its conclusions be more clearly traceable to the
underlying assumptions and dependence of results on prior assumptions.

The impacts of climate change may be compound in nature for certain types of extreme
weather events. For example, with extreme precipitation events, there is both a thermodynamic
component (warmer temperatures favor greater atmospheric humidity) and a dynamical
component (upward vertical motion is required for condensation of moisture). In the case of
tornadoes, there are likewise thermodynamic (warmer temperatures favor increased moist
energy in the atmosphere) and dynamical factors (greater atmospheric wind shear favors the
twisting of the atmosphere required for tornadic circulation) involved.

The projected changes in the underlying thermodynamic factors are typically better known
than those in the dynamical factors, and some researchers have argued that we can draw inferences
about extreme heat and extreme rainfall events based on the thermodynamic considerations (e.g.,
Shepherd 2014; Trenberth 2011, 2012; Trenberth et al. 2015). Others (e.g., Stott et al. 2016) have
argued that as long as projected dynamical factors remain uncertain, it is not possible to draw
reliable inferences about the impact that climate change will have on these events.

However, the latter argument implicates its advocates in a fallacy: that because we do not know
all underlying factors with certainty, we are unable to say anything about the impact of climate
change on a particular type of weather event. Consider, for simplicity, the case where the impacts
of the two factors (thermodynamic and dynamical) are multiplicative and independent. In such a
case, if we know with some considerable confidence (e.g., 90% likelihood) that the thermody-
namic factors will favor an increase in the frequency of the extreme weather events in question,
while dynamical factors are considered a toss-up (i.e., 50% likelihood), then the joint probability
(70% likelihood of an increase) is far from a toss-up. Such considerations are explored in more
detail by Shepherd (2016) and are implicit in the recent work of Diffenbaugh et al. (2015).
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Here, we attempt to compare the two competing philosophical approaches (frequentist vs.
Bayesian) to assessing climate change impacts on extreme weather phenomena. We make use
of a simple model of extreme weather events wherein the occurrence of events can be
classified on an annual basis as less active/below normal (“—"") or more active/above normal
(“+”). We assume N years of annual/seasonal observations available at M independent
locations over which we can form aggregate metrics of activity.

In a neutral (i.e., unaltered) climate, both active and inactive seasons (as measured relative to
some appropriately-defined climatological mean) are equally likely. By contrast, we suppose that
in a climate altered by anthropogenic increases in greenhouse gas concentrations, the distribution
of events will be shifted. While this characterization could be applied to any number of types of
extreme weather phenomena, there are a number of salient examples. One could consider the
number of record-breaking maximum daily temperatures over the course of the year across all
locations in North America, Eurasia, or the Northern Hemisphere (e.g., Meehl et al. 2007).
Alternatively, one could consider the number of extreme rainfall events over the course of the
year over these regions. In each of these examples, there are a priori physical reasons, as noted
earlier, to anticipate that climate change will on balance increase the incidence of these events.

We investigate the relative performance of the two philosophically different ap-
proaches with respect to the simple conceptual model described above. We use Monte
Carlo simulations to generate L realizations of a process consisting of time series of
length N = 64 years at M sites under the assumption of both neutral (i.e., equal likelihood
of less active “—” and more active “+” years) and climate change “biased” statistics
(higher likelihood of “+” years).

We then examine error rates for each approach for each situation, allowing for the
evaluation of both type 1 and type 2 errors of statistical inference. We conclude with a
discussion of the larger implications of our findings with regard to climate risk assessment.

2 Methods

We assume that the extreme weather events of interest have some long-term climatological
average rate of occurrence, and that there is equal likelihood of either fewer than average (“—”
or greater than average (“+”) numbers of events in any given year or season. This situation can be
characterized by a discrete, binary-valued statistical process that is statistically equivalent to coin
flipping. The probability distribution is given by the binomial distribution for N events (years in
this case):

P(O,N k) = (’D 0 (1-0)" * (1)

where k£ = 0, 1, 2,.., N, and where 6 represents the fractional probability of a “+” year (1-6
represents the fractional probability of a “—” year), and where

() =wvm g

is the binomial coefficient for NV events taken k at a time.
In the absence of any climate change impact, we assume an equal probability of less active
(“=”) and more active (“+”) years, with an active year fraction ¢ = 6, = 0.5. We are also
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interested in the alternative hypothesis that climate change has led to an increase in the
occurrence of events. That situation is characterized by a probability § =6, > 0.5 for active
(“+”) years. Note that for cases (like heat extremes, heat waves, flood frequency) where
climate change can be a priori assumed to lead to an increase in likelihood, we are dealing one-
sided statistical inferences and a one-tailed analysis of any change in the underlying probability
distribution

In the conventional, frequentist approach to detection and attribution, we adopt a null
hypothesis Hy of an equal probability of active and inactive years (6 =0, = 0.5). We reject it in
favor of the alternative hypothesis H; of a bias toward more active years (6 = 6, > 0.5) only
when we are able to achieve rejection of H, at a high (we choose the conventional critical
value p = 0.05) level of confidence. Once we determine that the null hypothesis can be rejected
at the p = 0.05 level, we replace the prior assumed value 6 = 0.5 with the value of § determined
from the accumulated raw data for the site. We do this for each of the M = 100 sites
independently and only in the end aggregate the statistical results to define a domain-wide
metric of occurrence frequency.

In the alternative, Bayesian approach, we assume (1) to represent a likelihood function for 0
conditional on the available observations. As a prior, we assume an unbiased process (f = 0.5),
admitting both informative (e.g., pre-specified binomial distribution centered at 6 = 6y = 0.5) or
uninformative (e.g., uniform over [0, 1]) prior distributions. As increasingly large numbers of
data N become available, we obtain a posterior distribution of the form of (1) via Bayes
Theorem:

P(BJA)P(A)

PAB) ==

(3)
where P(A) is the prior, P(B|A)/P(B) is the likelihood function given the data B, and P(A|B) is
the resulting posterior distribution, and where the revised estimate € is defined by the peak of
posterior distribution. Once again, we do the updating for each of the M sites independently,
and aggregate results in the end.

For the purpose of the analysis procedure, we generated via Monte Carlo simulations
of a binary-valued process of length N, = 64 for both (a) the unbiased case 6, = 0.5,
(b) the modestly biased case ¢, = 0.6, and (c) the strongly biased case 6y = 0.75. The
latter two cases correspond to a 20% higher and 50% higher likelihood, respectively, of
active (“+7) years vs. inactive (“—”) years. Given, for example, that the rate of record-
breaking warmth has doubled (i.e., exhibited a 100% increase) over the past half century
(Meehl et al. 2007), our use of a 20 and even 50% increase is, at least for some extreme
weather phenomena, conservative.

For each experiment, we performed parallel frequentist and Bayesian estimation of expect-
ed values for increasingly large subsets of the data series of length N, iteratively refining our
estimates of the posterior distribution and bias (b = 6y — 0.5). We performed six sub-
experiments that consist of using the first Vo, = 2, 4, 8, 16, 32, and 64 years of the total of
Nmax = 64 years of data for each site. These six experiments introduce, sequentially N =2, 2, 4,
8, 16, and 32 new years of data, respectively. For each set, we computed the expected (NV+)
number of active years based on updated estimates of 6, derived from the posterior distribution
of the previous experiment.

For both methods, we defined an error function ¢ as the average over all M sites of the
absolute difference between the observed (V+) and predicted (N+) number of active years,
allowing us to objectively compare the performance of the frequentist and Bayesian
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approaches. The absolute error is a reasonable proxy for quantities, such as total accrued
damage, that might be of interest in the context of climate change risk.

For a single binary process with nearly equal probabilities (i.e., 6y = 0.5 to 0.6) for the two
(less active and more active) states, the signal-to-noise ratios for the bias » = 6, — 0.5 are
relatively low. However, aggregating over a set of independent sites M leads to a considerably
better estimate of the signal.

We show results based on both (a) a large (M = 100) spatial array of sites that can be
thought of, conceptually, as an average over a continental (e.g., US-wide) domain, and (b) a
smaller (M = 5) spatial array that can be thought of conceptually as representing an average
over a local region (e.g., central Pennsylvania). In both cases, we average the spatial-mean
statistics over a large (L = 100) number of independent realizations to get representative
estimates. For the Bayesian analysis, we have employed a modestly informative prior corre-
sponding to the binomial distribution P(# = 0.5, k = 2, N = 4). Similar results are obtained for
the uninformative uniform prior [0 1].

Our approach represents a simplification of the real world impact of climate change on
extreme weather, and this is indeed the point. The simplicity of the proof-of-concept we provide
speaks to the generality of the underlying approach and the broad likely applicability of the
conclusions drawn. We suggest that there are a number of potential extensions of the approach
that are worth pursuing. Among them is the use of a steadily changing climate (rather than the
simple binary biased/unbiased before/after approach taken), including allowing for scenarios
such as accelerating climate change impacts and/or tipping point-like transitions.

3 Results and discussion

In the frequentist analysis, the distribution of p values for rejecting the null remains centered at
p = 0.5 in the case of the unbiased distribution, as it should (Fig. 1). The small number of false
positives (~ 2 per site breach the p = 0.05 level on average for the M = 100 site experiments)
are consistent with chance expectations. In the case of the biased distribution, by contrast, there
is instead a clear trend toward rejecting the null as N, increases. As we approach Ny, = 64, we
find that the median of the distribution just breaches the p = 0.05 threshold for the modestly
biased case (A = 0.6), indicating that the null hypothesis of an unbiased distribution is now
being rejected at roughly half the sites. For the strongly biased case (6, = 0.75), we observe
much more rapid convergence toward rejection of the null, with more than 50% of the sites
breaching the p = 0.05 threshold at Ny, = 16 and more than 75% of the sites at Ny, = 32. The
smaller array of sites (M = 5) yields slightly slower convergence toward the rejection of the
null, e.g., the median still lies above the p = 0.05 threshold for the modestly biased case at
Neor = 64. The frequentist approach, in short, yields the expected results.

In the Bayesian analysis (Fig. 2), by contrast, we find that posterior distributions efficiently
converge toward the correct values for both the unbiased (6, = 0.5) and biased (6, = 0.6 and
0y = 0.75) cases, as the number of years increases to Ny, = 32 and then N,,, = 64 years. The
distributions both approach the correct mean value and narrow in width and uncertainty as
more data become available. For the modestly biased case 6, = 0.6 and M = 100 sites, only a
small fraction (~ 5%) of the total area under the distribution lies to the left of 6, = 0.5 for
Nior = 64, consistent with the observation above (Fig. 1) that the median p value breaches the
p = 0.05 significance level for N, = 64.
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Fig. 1 p value from frequentist analysis for rejecting null hypothesis of unbiased weather statistics vs. total years
of data (V) for (left) neutral climate, (center) biased climate with 6y = 0.6, and (right) biased climate with
0o = 0.75. Shown are median (solid) and lower and upper interquartile range (dashed) for (upper) M = 100 sites
and (bottom) M = 5 sites. As in subsequent figures, statistics have been averaged over a set of L = 100 realizations

Now compare the estimates of the active year fraction 6, for both biased and unbiased
distributions, for both approaches (Fig. 3). We see that the Bayesian approach, once again,
readily converges toward the correct estimates of bias in both cases. In the frequentist
approach, we update 0 for a site, replacing the null value (6, = 0.5) with an estimated 6,
based on the available data for the site, when and only when the critical value (p = 0.05) for
rejecting the null has been reached for that site. The estimates for the biased cases using
frequentist updating converge far more slowly toward the true values than with Bayesian
updating. This effect is most pronounced for the modestly biased case (¢, = 0.6) and for the
small (M = 5) spatial array, but is evident in all experiments. In short, frequentist updating is
too conservative, and too slow, to recognizing the bias toward the active state that exists in the
underlying data. As a consequence, the frequentist updating consistently underpredicts the
number of active years, while the Bayesian approach yields estimates that closely match the
observed numbers (see Supplementary Fig. S1).

Finally, we can compare the errors for the two approaches (Fig. 4). Consider the case
where the true distribution is biased. The baseline for comparison then is the steadily
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Fig. 2 Prior and posterior probability distributions from Bayesian analysis for the active year fraction (6) for
(left) neutral climate, (center) biased climate with 6, = 0.6, and (right) biased climate with 6, = 0.75. Shown are
prior distribution (red), and posterior distributions for intermediate N;,; = 32 (green) and final N, = 64 (black)
distributions. Shown are median (solid) and lower and upper interquartile range (dashed) for (top) M = 100 sites

and (bottom) M = 5 sites

increasing absolute error associated with the null prediction of an unbiased distribution.
For the strongly biased case 6y = 0.75 with large (M = 100) spatial array, where
convergence toward the true distribution is efficient for either method, the errors for
both frequentist and Bayesian updating level off rapidly to the asymptotic constant
background value. For the biased case 6, = 0.6, however, the errors using frequentist
updating continue to grow with sample size through N = 32, while the errors for the
Bayesian approach remain substantially smaller and nearly level as the posterior distri-
bution becomes tighter and more accurate with increasing N. The errors for the Bayesian
prediction also remain lower than those for frequentist updating for the small spatial
(M = 5) spatial array in both modestly and strongly biased cases.

While the Bayesian updating reduces errors when a bias is present, such reduced error
might be offset by greater error when there is no bias present. Such increased error could
result from more frequent false positives (i.e., spurious estimates of 6 that depart from
the true value of 0.5). However, we see that this effect is modest, as errors are similar for
the two approaches in the unbiased case. That conclusion holds most strongly for the

large array (M = 100) of sites (Fig. 4).
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Fig. 3 Estimated active year fraction (6y) for (left) neutral climate, (center) biased climate with 6, = 0.6, and
(right) biased climate with 6, = 0.75 as a function of total years of data (V). Results are shown for frequentist
updating with p = 0.05 (magenta), as well as Bayesian updating (blue). Shown are median (solid) and lower and
upper interquartile range (dashed) for (upper) M = 100 sites and (bottom) M = 5 sites

4 Ethical considerations in climate change attribution

We have argued for the Bayesian approach on the intellectual grounds that it offers a
greater likelihood of producing empirically accurate results in detection and attribution
studies. This argument is reinforced by the ethical considerations of climate change
attribution. It is well established that the conventional frequentist approach poses a
greater risk of type 2 rather than type 1 error. In climate change detection and
attribution, this means that we will tend to underestimate the danger represented by
extreme events that have been worsened, or made more probable, by an anthropogenic
component (Anderegg et al. 2014). This in turn means that society may underprepare
for real threats, increasing the likelihood that property damage, injury, and loss of life
will ensue (Lloyd and Oreskes, in review).

One might therefore argue that scientists should “err on the side of caution” and take
steps to ensure that we are not underestimating climate risk and/or underestimating the
human component of observed changes. Yet, as several workers have shown (Rahmstorf
et al. 2007; Brysse et al., 2013), the opposite is the case in prevailing practice. Available
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Fig. 4 Absolute error (¢) between average over M sites of the predicted and observed number of active years
(N+) vs. years of data (N) for (left) neutral climate, (center) biased climate with 6, = 0.6, and (right) biased
climate with 6, = 0.75. Results are shown for null (¢, = 0.5) prediction (red) and null prediction using frequentist
updating with p = 0.05 (magenta), as well as Bayesian updating (blue). Shown are median (solid) and lower and
upper interquartile range (dashed) for (top) M = 100 sites and (bottom) M =5 sites

evidence shows a tendency among climate scientists to underestimate key parameters of
anthropogenic climate change, and thus, implicitly, to understate the risks related to that
change. This underestimation is linked to the use of the frequentist approach with a null
hypothesis of “no effect” and a high level of required confidence.

Why have scientists taken this approach, given that other approaches are not only possible,
but, as we have shown, may produce more accurate results? One often offered answer is that
“conservatism” is crucial for protecting the credibility and reputation of climate science, where
conservatism is defined as not “crying wolf.” (Brysse et al. 2012; Oppenheimer et al. 2017).
However, it is also possible to lose credibility by missing threats. More important, if we fail to
alert society to unfolding harms, or understate what we know about those harms, then civil
society will underprepare and people will be unnecessarily hurt. Conventional practice effec-
tively puts protecting the reputation of climate science ahead of human safety and well-being.

Of course, there are serious risks associated with overreacting. However, given the
unequivocal evidence that anthropogenic climate change is underway, and the mounting
evidence that at least some hazardous phenomena have been made more likely by it, and
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given the observed slow response of civil society to act to prevent those harms, it seems
reasonable to conclude that the risks of underreaction to climate change are now greater
that the risks of overreaction. We suggest that in such a situation, it is ethically preferable
to embrace an approach that avoids understating what we know. Fortunately, as we have
shown, this approach is intellectually preferable as well.

5 Conclusions

Using a simple conceptual model for the occurrence of extreme weather events, we show
that the traditional frequentist approach to hypothesis testing, under a fairly general set of
assumptions, suffers from a tendency to underestimate potential climate change impacts on
the occurrence of extreme weather events when such an impact is present in the data. That
underestimation, and the error associated with it, tends to increase substantially over time.
An alternative Bayesian updating approach does not suffer from this problem.

The dominant current paradigm used in the field of detection and attribution is to employ a
frequentist approach, requiring a very high threshold of significance (e.g., p = 0.05) for
rejecting the null hypothesis of no impact. We argue that this paradigm is conceptually flawed,
empirically damaging, and ethically questionable. It comes at a significant cost to the empirical
accuracy of detection, leads to delayed detection and a weakened ability to respond to such
detection, and increases the overall likelihood of underpreparedness for climate-related harms.

If the objective is to minimize forecast error and potential damage, an alternative Bayesian
approach wherein likelihoods of impact are continually updated as data become available is
preferable. We have shown that such an approach will, under rather general assumptions, yield
more accurate forecasts. Indeed, a proof-of-concept for how scientists might employ a
Bayesian approach to detection and attribution has already been outlined in the literature
(Berliner et al. 2000). It is our recommendation that such an approach be pursued more
vigorously in future work. Such an approach would be better both empirically and ethically.
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