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1. Introduction

The quasi-biennial oscillation (QBO) of the equatorial strato-
spheric winds is among the most well-known quasi-biennial
climate patterns. This phenomenon consists of easterly and
westerly wind regimes in the tropical stratosphere with a mean
period of 28 months (2.3 years; Baldwin et al., 2001). Surface air
temperatures also exhibit a quasi-biennial component, which may
be associated with the North Atlantic Oscillation (NAO; approxi-
mately 2.2 year period; Mann and Park, 1994). Spectral analysis
has helped detect quasi-biennial signals in precipitation (Rajago-
palan and Lall, 1998), surface air temperature (Mann and Park,
1994), sea ice cover (Gloersen, 1995), tree rings (Rao and Hamed,
2003), and indices of ENSO (approximately 2.5 year period; Ghil
et al., 2002). Despite the evidence for significant quasi-biennial
variability in climate, previous studies have argued against a
similar timescale crop signal in the U.S. (Black and Thompson,
1978).

Fig. 1 shows six counties in Iowa that cover nearly 9000 km2

within the surface geologic region known as the Des Moines Lobe.
This is an important corn producing region because it is among the
highest corn producing and yielding regions in Iowa (Fig. 1), Iowa is
generally the leading corn yielding and producing state in the U.S.
(USDA-NASS, 2008), and the U.S. has produced approximately 40% of
the world’s corn since 2000 (FAOSTAT, 2008). Also, these six counties
have the principal soil association of Clarion–Nicolette–Webster
(ISU, 2004), which require artificial drainage for corn production.
Artificial drainage coupled with a high corn yielding environment
contribute to streams within the Des Moines Lobe to be among the
greatest sources of nitrogen loading to the Mississippi River Basin
(Goolsby et al., 2001), which has been implicated as a cause of
hypoxia in the northern Gulf of Mexico. In general, anthropogenic
perturbation of the global nitrogen cycle is of increasing concern
(Gruber and Galloway, 2008), and food production is the major
contributor (Galloway et al., 2003). Corn yield variability could affect
nitrate flux because small changes in corn yield may have greater
effects on N loss in artificially drained soil (Malone and Ma, 2009).

Long-term U.S. corn yield variability is often associated with
weather variability such as temperature and rainfall (e.g., Lobell
and Asner, 2003; Hu and Buyanovsky, 2003). Large-scale climate
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A B S T R A C T

Quasi-biennial cycles are often reported in climate studies. The interannual El Niño Southern Oscillation

(ENSO) and North Atlantic Oscillation (NAO) are two phenomena containing quasi-periodicities of

approximately 2.5 and 2.2 years. It is known that ENSO affects corn yield through weather patterns, NAO

affects surface temperature and cloudiness, and surface temperature, rainfall, and radiation affect corn

yield. However, a quasi-biennial pattern in corn yield and the combined effect of several climate signals

on long-term U.S. corn yield are not known. Here we show statistically significant 2–3 year periods in

long-term corn yield from one of the world’s most important corn producing regions. High (low) yields

are due in part to high (low) surface radiation and low (high) temperature early in the corn growing

season coupled with sufficient (insufficient) rainfall later in the growing season. A statistical model we

developed using three climate indices accounts for 54% of the interannual variation in Iowa corn yield.

The most significant periodicities found in the model’s spectrum are similar to the quasi-biennial

periodicities in observed corn yield. We classify Iowa corn yield from several regional datasets (1960–

2006) for ‘low yield’ and ‘high yield’ conditions as predicted by the model. The difference between

observed corn yields for ‘high’ and ‘low’ yielding years was 19% (p = 0.0001). The results demonstrate a

quasi-biennial pattern in long-term Iowa corn yield related to large-scale climate variability. This

knowledge could lead to models that help guide springtime agricultural management decisions that

improve profitability and reduce nitrate flux to groundwater, streams, rivers, and coastal oceans.
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signals such as ENSO have been linked to corn yield variability in
the U.S. corn-belt because of its association with growing season
temperature and precipitation variability (e.g., Phillips et al., 1999;
Carlson et al., 1996). Combinations of climate signals (ENSO and
the NAO) have been found to affect agro-pastoral production in
Africa (Stige et al., 2006). For example, in southern Africa strong
associations were found between year-to-year variability of ENSO
and corn yield. Also year-to-year NAO variability was associated
with slaughter weights of goats in western Africa and rice yield in
northern and central Africa. However, the combined effects of
several climate indices on U.S. corn yield variability remain fairly
unexplored. Also, the effects of annual variation in ground level
solar radiation during the growing season on long-term corn yield
in the U.S. remain fairly unexplored.

Here we analyze long-term corn yield from the Des Moines Lobe
region of Iowa with daily temperature, rainfall, solar radiation, and
monthly indices of NAO, SOI, and QBO. The Southern Oscillation
Index (SOI) provides a quantitative measure of the ENSO cycle and
the SOI correlates with future rainfall in some regions (Stone et al.,
1996). This analysis should help answer several questions: does
long-term corn yield variability in the U.S. contain a significant
quasi-biennial component, what weather drives this phenomenon,
is it related to large-scale climate variability, and what are the
quantitative effects?

2. Materials and methods

2.1. Data

Table 1 summarizes the data used in this analysis, which
includes county-level corn yield from Iowa, climate indices (SOI,
QBO, and NAO), daily temperature, daily precipitation, and daily
solar radiation. The QBO was briefly described above; the NAO and

SOI consist of monthly records of fluctuation in north-south North
Atlantic atmospheric pressure gradient (NAO) and the surface air
pressure difference between Tahiti and Darwin, Australia (SOI). In
Iowa, corn is generally planted in April or early May and harvested
in October or November. Irrigation is not much of a factor in Iowa
with less than 44,000 irrigated corn acres in 1998 (USDA-NASS,
1999) and more than 12 million planted corn acres (USDA-NASS,
2008). The timing of precipitation, temperature, and solar
radiation with the most effect on corn yield variability should
range from a few weeks before planting to a few weeks before
harvest. Therefore, weather records were compiled that excluded
winter and late fall periods.

We detrended the average annual corn yield from the six Iowa
counties (Fig. 1) by first describing the linear trend through the
‘‘maximum’’ yield (Fig. 2a). The ‘‘maximum yield’’ is the 3-year
maximum subject to the constraint that corn yield increases with
time. This constraint is because technology, including seed genetics
and fertilizer, increases corn yield with time after 1945 (Hu and
Buyanovsky, 2003). Annual corn yield variation mainly due to
changes in climate was obtained by subtracting the linear trend
(maximum yield) and dividing by the trend (Fig. 2b). This represents
the ‘‘yield fraction’’ (yf = [yield/{0.148� x� 285.23}] � 1), where x

is the year. The linearly detrended corn yield can be thought of as the
corn yield percent difference relative to the expected potential yield.

2.2. Spectral analysis

The spectral analysis focuses on the short-term variations in
corn yield data, obtained by subtracting the polynomial compo-
nent from yf (Fig. 2c). Polynomial and linearly detrended corn yield
throughout this text (e.g., individual county corn yield) was
detrended similar to this method. Linearly detrended data did not
have the polynomial component subtracted.

Fig. 1. Average corn yield and land area with harvested corn for each county in Iowa, 1995–2005. The large area outlined in north central Iowa represents the Des Moines Lobe

surface geologic region. Six counties are outlined within the Des Moines Lobe. The major rivers draining the Des Moines Lobe area and flowing to the Mississippi River are also

shown. Data from USDA-NASS (2008).

Table 1
Data summary.

Data Years Data source and/or description

Annual county corn yield for Iowa 1950–2006 USDA-NASS (2008)

Monthly climate indices (NAO, SOI, QBO) 1950–2006 NOAA-ESRL (2008)

Daily rainfall (42.038N, �93.808W) 1960–2006 IEM (2008)

Daily temperature (42.03 N, �93.80 W) 1960–2006 IEM (2008)

Daily solar radiation (42.03 N, �93.80 W) 1960–1991 Meek (1997)

Daily solar radiation (41.96 N, �93.68 W) 1991–2006 Hatfield et al. (1999)
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The multitaper method of spectral analysis was used to detect
periodicities in polynomial detrended long-term corn yield. In cases
where the signal-to-noise ratio is low (such as climate data), the
multitaper method provides a better trade off between spectral
resolution and statistical variance than single taper methods (Mann
and Lees, 1996). This method also allows for detection of purely
harmonic (periodic) signals and broader-band (quasi-periodic)
signals, and is relatively easy to test the spectral components for
statistical significance. ASUM (2003) was used for the multitaper
spectrum with four data tapers (n = 4) and a bandwidth of 2.5/N,
where N is equal to 55 years (1952–2006). The sapa package from R
was used for coherence spectrum (http://cran.us.r-project.org/).
Further details of the multitaper method are described elsewhere
(e.g., Rao and Hamed, 2003; Lees and Park, 1995).

Rao and Hamed (2003) included significance levels of p < 0.1
for studying regional hydrologic and climatic data using multitaper
analysis where several different datasets point to a regional
periodicity. We are testing for periodicity within the Des Moines
Lobe region of Iowa. Therefore, we use the Fisher method of
combining tests of significance (Fisher, 1948) to determine the

optimal statistical significance of the periodicities for the ‘‘six
county’’ area without considering spatial correlation effects. The
Fisher method can be summarized as X2

2k ¼ 2
P

ln ð1=PÞ, where X2
2k

is chi-square with 2k degrees of freedom, k is the number of
combined tests (six in our case for the six different Iowa counties,
Fig. 1), and P is the p-value for independent tests.

2.3. Regression analysis

Multivariate regression was performed using weather variables
(temperature, rainfall, solar radiation) as predictors and trans-
formed corn yield fraction (yf_t) from 1960 to 2006 as the
dependent variable. The linearly detrended corn yield fraction of
Story county, which was transformed to approximate normality
[yf_t = (yf + 3)8/8], was used for this part of the regression analysis
because ground level long-term global solar radiation (wavelength
of 285–2800 nm) records are available in Story county Iowa
beginning in 1960 (Meek, 1997). The regression analysis included
linear, quadratic, and interactive weather predictors (e.g., temper-
ature � precipitation, temperature2, precipitation2). A second
order polynomial regression was used because weather variables
such as temperature and precipitation can have a non-monotonic
effect on yield (e.g., Lobell et al., 2007). The interaction terms were
included because variables such as precipitation may affect corn
yield differently at high and low temperature. We used a
combination of selection procedures to develop the final equation
such as stepwise, cross-validation, and manual selection of
variables. Manual selection of variables was based on statistical
relationships, simplicity, and knowledge of corn growth processes
and is comparable to Lobell et al. (2007), where manual variable
selection was based on statistical relationships and knowledge of
crop phenology. The final set of variables is mechanistically
plausible and tested using cross-validation.

Similar to the regression analysis using weather variables,
multivariate regression was performed using climate variables
(NAO, QBO, SOI) as predictors and transformed ‘‘six county’’ corn
yield fraction (yf_t) from 1960 to 2006 as the dependent variable.
This analysis was conducted because weather variables such as
precipitation and temperature that contribute to corn yield
variability could be related to larger scale climate variability such
as ENSO. In addition, the quasi-biennial component of the NAO
may be associated with patterns of surface air temperature (Mann
and Park, 1994) and cloudiness (Warren et al., 2007). Higher cloud
cover during the daytime is associated with lower incoming
ground level radiation, including lower photosynthetically active
radiation (PAR). We did not find research that reports correlations
between QBO and PAR variability, however, the QBO affects ground
level UV-B radiation (Zerefos et al., 1998) and ozone to latitudes of
15–608N with the maximum effect at approximately 30–408N
(Baldwin et al., 2001). Increased surface UV-B radiation is generally
reported to reduce corn yield, but may improve drought tolerance
for some plants (Sullivan et al., 2003).

2.4. Cross-validation

We used ‘‘k-fold’’ rather than ‘‘leave one out’’ cross-validation to
test the regression equations because climate indices can be serial
correlated (e.g., Sabbattelli and Mann, 2007). The data were split
into 7 blocks of 39 or 40 observations for model calibration and 6 or
7 omitted values for model validation. The data used were 1960–
2006 from Story county or ‘‘six county’’ yf_t and the predictands for
the regression equations (see predictand definition below). The
two equations with the final set of included variables produced the
lowest predictand residual sum of squares (CV PRESS statistic) and
lowest mean square error (MSE) for all the steps in the regression
procedure. Predictand is the predicted value for the observations

Fig. 2. Annual corn yield for the ‘‘six county’’ area. (a) The small squares show the

average annual corn yield from six Iowa counties described in Fig. 1. The large

squares show the 3-year maximum yield with the constraint that corn yield

increases with time. A linear trend is fitted to the maximum yield. (b) As (a), with

the linear trend removed and the third order polynomial fitted to the data

superimposed. The median of ‘‘neutral’’ yield was inserted at �0.09 (see text for

description). (c) As (b), with the polynomial and the mean subtracted (squares), and

the harmonic pattern with two periods (2.3 and 2.6 year) fitted to the data

superimposed. The black lines slightly above and below zero are at �0.035, which

were selected as the bounds for ‘‘neutral’’ (see text for description). The small black

vertical dashes represent the cyclic pattern at harvest (same time as the polynomial

detrended corn yield fraction, black squares).
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omitted from the calibration blocks. The seven validation blocks
were 1960–1966, 1967–1973, 1974–1980, 1981–1987, 1988–
1994, 1995–2000, or 2001–2006. Note that leave one out cross-
validation shows a lower residual sum of squares than k-fold
suggesting k-fold is a more conservative cross-validation techni-
que for our analysis (results of leave one out cross-validation not
presented).

2.5. Categorization of data

After the regression analysis with climate indices, we categorized
the observed yf according to ‘‘high’’, ‘‘neutral’’, and ‘‘low’’ yield years
as determined from the regression equation. Carlson et al. (1996)
categorized Midwestern corn yield according to extremes of the
Southern Oscillation Index (SOI). Our intents included: maximizing
the number of years categorized as ‘‘high’’ or ‘‘low’’, maximizing the
difference between ‘‘high’’ and ‘‘low’’ yielding years, and avoiding a
classification system unrepresentative of the mean or median yield
difference from the ‘‘high–low’’ split. Although somewhat arbitrary,
we identified 50% of years as ‘‘neutral’’, which was a reasonable
compromise for our objectives as discussed in more detail below
(Section 3.3). We also categorized the observed yf as ‘‘high’’,
‘‘neutral’’, and ‘‘low’’ as determined by the spectral analysis, which
was used to help quantify the quasi-biennial effect.

3. Results and discussion

3.1. Spectral analysis of detrended observed corn yield

Fig. 2c shows the average annual corn yield fraction from 1952
to 2006 of the six Iowa counties (Fig. 1) with the long-term linear
and polynomial trends removed (Fig. 2a and b). Fig. 3a shows the
spectrum of Fig. 2c using the multitaper method. The largest
spectral magnitude is centered on a frequency of about 0.4 cycles
per year (2.5 years). The F-statistic in proximity to this frequency
suggests two significant periods of 2.3 and 2.6 years (frequencies of
0.43 and 0.38 cycles per year; p < 0.1). Using the Fisher (1948)
method of combining tests of significance for the six different
counties (see Table 2) results in both periods (2.3 and 2.6 years)
having an optimum statistical significance at p < 0.01 without
considering spatial correlation effects.

Fig. 2c shows the optimized cyclic, harmonic pattern of the
polynomial detrended data obtained using non-linear regression
with two periods of 2.3 and 2.6 years, where it accounts for 24% of the
variance. This pattern was categorized as high, low, and neutral, with
approximately 50% of corn yield falling into neutral (0.035 to
�0.035) and 50% falling into either high (>0.035) or low (<�0.035).
The observed annual corn yield fraction for the ‘‘six county’’ area
without polynomial detrending (Fig. 2b) was then grouped
according to this classification, resulting in low, neutral and high
median observed yield fractions of �0.19, �0.09, and �0.03. The
difference between the high and low median yield fraction for this
area is then 0.16 (p < 0.05 using the one-sided median test). Three
out of 11 ‘‘low’’ observations were higher than ‘‘neutral’’ (1967,
1969, 1972; Fig. 2b and c) and 5 out of 16 ‘‘high’’ observations were
lower than ‘‘neutral’’ (1955, 1957, 1976, 1997, 1999; Fig. 2b and c).
The most obvious outlier compared to the optimized harmonic
pattern is 1972 (Fig. 2c); the observed data deviate from a harmonic
pattern partly because truly harmonic signals are rarely detected in
climatic and geophysical time series (e.g., Ghil et al., 2002).

3.2. Weather variables and corn yield fraction

We then investigated the timing and sensitivity of weather
variables affecting annual corn yield and thus the quasi-biennial
pattern. This resulted in the following cross-validated equation
(Supplementary Table 3), which accounts for 89% of the variation
in Story county annual corn yield fraction (yf; Fig. 4a):

Fig. 3. Spectral analysis of ‘‘six county’’ and climate indices predicted corn yield

fraction (Eq. (2)). (a) The multitaper spectrum of six county polynomial detrended yf

(Fig. 2c) and Eq. (2) predicted yf that was polynomial detrended, with the F-statistic

periodicity. (b) The coherency between time series, with 95% confidence bands.

Table 2
Periodicities in polynomial detrended corn yield fraction for different areas within

Iowa*.

Area Frequency

(cycles/year)

Period

(year/cycle)

F-statistic p-valuea

1 2 1 2 1 2 1 2

‘‘six county’’ 0.38 0.43 2.62 2.34 3.78 3.58 0.09 0.10

Story 0.38 0.43 2.63 2.33 3.83 3.30 0.09 0.11

Boone 0.38 0.43 2.62 2.33 2.61 4.18 0.15 0.07

Hamilton 0.38 0.43 2.64 2.34 4.15 2.88 0.07 0.13

Webster 0.38 0.43 2.64 2.34 3.19 2.22 0.11 0.19

Humbolt 0.38 0.43 2.62 2.33 4.62 5.64 0.06 0.04

Wright 0.39 0.42 2.57 2.36 3.96 3.13 0.08 0.12

* The two periods reported for each county are the nearest significant periods to

the ‘‘six county’’ area of 2.62 and 2.34.
a p-value with 2 and 6 degrees of freedom (2n � 2), where n is equal to four data

tapers.

yf ¼ f½�25748� ð356:7� LtempÞ þ ð6:357� Ltemp2Þ þ ð7:288� EprecipÞ � ð5:240E�
3� Eprecip2Þ þ ð2321� EtempÞ � ð43:82� Etemp2Þ � ð5:920E� 3� Eprecip� LprecipÞþ
ð0:11095� Erad� LprecipÞ � ð0:1267� Eprecip� LtempÞ� � 8gð1=8Þ � 3

(1)
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where Etemp and Ltemp are early and late season average daily
maximum temperature (8C) for May 10–July 23 and July 24–
August 17, Eprecip and Lprecip are early and late season total
precipitation (mm) for April 25–July 3 and July 4–September 1, and
Erad is early season average daily radiation (MJ/m2/day) for May
15–June 13. Late season radiation was not a significant term in
Eq. (2) (p > 0.2).

The equation was developed by systematically adjusting the
pentads (5-day) included in weather variable calculation, which
minimized the variance between annual observed yf and Eq. (1)
predicted yf. This ‘‘pentad adjustment’’ was necessary because
within-season weather variations are needed to explain long-term
weather effects on corn yield (Hu and Buyanovsky, 2003).

Fig. 5 illustrates the complex relationship among weather
variables and corn yield estimated using Eq. (1). For example, two of
the most sensitive variables are Erad� Lprecip and Etemp, and high
Etemp will cancel any positive benefits of high Erad (Fig. 5). This
agrees with Muchow et al. (1990), where worldwide locations with
lower temperature and higher solar radiation had maximum corn
yield. Also, corn yield depended positively on Lprecip and an
interaction between Lprecip and Erad: radiation affected yield
positively at high Lprecip, but less so at low Lprecip (Fig. 5), which is
supported by the smaller slope of the linear trend through the
predicted data (Fig. 6a). Corn yield was relatively unaffected by
Lprecip under the conditions of low Erad and high Eprecip (Figs. 5
and 6c). Corn yield was negatively affected by increasing Ltemp but
more so under high Eprecip (Figs. 5 and 6d), suggesting that central
Iowa corn yield may be more sensitive to higher temperature under
high Eprecip but further research is needed to confirm this. Although
further research is needed, Hu and Buyanovsky (2003) discussed
that dry conditions in the planting and early growing season could
stimulate growth of a larger and deeper root system favouring high
corn yields because more moisture could be obtained from deeper
layers during later growth. If the root system is shallower under high
Eprecip, corn may also have a higher likelihood of nitrogen stress
because of reduced access to soil nitrate leached below the root zone

under high Eprecip. Increasing Eprecip and Etemp tend to improve
corn yield until approximately 300 mm and 27 8C then yield
decreases with increasing Eprecip and Etemp (Figs. 5 and 6b). High
temperature early in the growing season (high Etemp) may reduce
the duration of growth during this period. Muchow et al. (1990)
explained that the primary influence of temperature is on growth
duration. Lower temperature increases the length of time that the
crop can intercept radiation, including during the vegetative period.
Under favourable growing conditions, biomass accumulation is
directly proportional to the amount of radiation intercepted, and
grain yield is directly proportional to biomass at a given harvest
index (ratio of grain mass/biomass).

Therefore, Eq. (1) produces results that are plausible from our
mechanistic understanding of corn growth under variable
temperature, precipitation, and radiation. Additionally, observa-
tions of higher corn yield with higher Lprecip and lower Ltemp
(Figs. 5 and 6c and d) are in agreement with other research.
Although corn yield can increase with above average July and
August temperatures when rainfall is sufficient (Runge, 1968),
below average July and August temperatures and above average
July and August rainfall are generally associated with higher corn
yield (Malone et al., 2007; Hu and Buyanovsky, 2003; Wilhelm and
Wortmann, 2004; Thompson, 1986, 1969).

This regression analysis links long-term corn yield with late
May through early June radiation (Erad). Even the earliest
mechanistic plant growth models included solar radiation as a
sensitive variable (Curry, 1971). However, research is sparse that
links solar radiation variability to long term observed crop yield
variability. One exception reported lower solar radiation and lower
winter Florida vegetable yields during El Niño winters (Hansen
et al., 1999). Another study included average solar radiation values
for the growing season in the analysis of long-term climate effects
on corn yield (e.g., Lobell and Asner, 2003). The difficulty obtaining
quality long-term radiation records may help explain why many of
the long-term corn yield studies focus on rainfall and/or
temperature variations without including radiation in the analysis
(e.g., Phillips et al., 1999; Sun et al., 2007; Carlson et al., 1996; Hu
and Buyanovsky, 2003).

3.3. Climate indices and corn yield fraction

To investigate the relationship between corn yield and larger-
scale climate variability, we constructed a statistical model that
predicts annual corn yield as a function of three climate indices.
The following cross-validated equation (Supplementary Table 3)
describes the resulting model, which accounts for 54% of the
variation in the ‘‘six county’’ corn yield fraction (yf; 1960–2006;
Fig. 4b):

yf ¼ f½�196:68þ ð130:08� naoÞ þ ð33:496� qbodÞ

� ð0:733� qbo2
dÞ � ð2:073� soi2Þ� � 8g

ð1=8Þ
� 3 (2)

where ‘nao’ is the average monthly North Atlantic Oscillation (NAO)
for May–July for the planting year; ‘qbod’ is the average August–
October minus May–July quasi-biennial oscillation (QBO) difference
before planting; and ‘soi’ is the average monthly Southern
Oscillation Index (SOI) for October–December before planting. A
constant was added to the climate indices in the regression analysis,
which increased the values for all years to greater than 1.0 (5, 25, and
9 was added to nao, qbod, and soi, respectively). For the most part
interpreting Eq. (2) is straight forward with increasing corn yield
with increasing nao and decreasing soi. The variable qbod had little
effect on corn yield below about 30 but corn yield decreased rapidly
with qbod greater than 30.

The variable nao correlated positively with Erad (r = +0.43;
p = 0.002); soi2 correlates negatively with Lprecip (r = �0.32;

Fig. 4. Annual corn yield fraction (yf). (a) The Eq. (1) predicted annual corn yield

fraction with the observed Story county corn yield fraction. (b) The Eq. (2) predicted

annual corn yield fraction with the observed ‘‘six county’’ corn yield fraction. The

small squares show ‘‘neutral’’ Eq. (2) predicted corn yield (see text). The horizontal

black lines at�0.126 and�0.05 were selected as the bounds for ‘‘neutral’’ (see text).

Corn yield fraction values before 1960 were not included in the regression analysis

(Eqs. (1) and (2)) because radiation data before 1960 are not readily available.

R.W. Malone et al. / Agricultural and Forest Meteorology 149 (2009) 1087–1094 1091
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p = 0.027); and qbo2
d correlates positively with Ltemp (r = +0.38;

p = 0.007). The correlation between nao and Erad could be related
to cloud cover (Warren et al., 2007). The correlation between soi
and Lprecip may be consistent with low magnitude SOI for two
consecutive months associated with a high probability of
exceeding median rainfall for the following months in the
north-central U.S. (Stone et al., 1996). The QBO has been reported
to impact the incidence of extreme temperature events in the
wintertime (Thompson et al., 2002) and surface UV radiation
(Zerefos et al., 1998). Long-term surface UV radiation data in the

U.S. corn-belt is available starting around 1997; as more data is
collected, future research may detect a correlation with QBO.

We classified about 50% of Eq. (2) annual yf estimates as neutral
and the rest as either high or low (Fig. 4b). The ‘‘high’’, ‘‘low’’,
‘‘neutral’’ classification system used does not appear unrepresen-
tative of the range of possible splits (Fig. 7). This pattern was
applied to the observed yield fractions (yf) for the ‘‘six county’’
area, which results in a mean yf difference between high and low
yielding years of 0.19 (or 19%; p = 0.0001; Table 3). The difference
between the high and low median yf for this area is 0.15 (or 15%;

Fig. 5. Corn yield fraction (yf) as a function of weather variables, estimated using Eq. (1) (contour intervals of 0.05). Average values for weather variables are used in Eq. (1)

computation of yf except where adjusted as shown. Data are not available for the conditions of high early temperature and low early radiation; data are not available for the

conditions of low late precipitation and low early precipitation.

Table 3
Observed mean and median corn yield fractions (yf) for different areas in Iowa grouped by high, low, and neutral*.

Area Category mean Means comparison p-value Category median p-value

High Neutral Low h, n n, l h, l High Neutral Low h, l

‘‘six county’’ �0.02 �0.09 �0.21 0.0461 0.0079 0.0001 �0.03 �0.09 �0.18 0.0007

State (Iowa) �0.03 �0.10 �0.19 0.0892 0.0548 0.0008 �0.02 �0.08 �0.14 0.0007

Story �0.04 �0.07 �0.24 0.4277 0.0023 0.0003 �0.06 �0.08 �0.15 0.0082

Boone �0.02 �0.10 �0.24 0.0381 0.0242 0.0001 �0.03 �0.11 �0.16 0.0082

Hamilton �0.02 �0.10 �0.22 0.0320 0.0108 0.0001 �0.01 �0.07 �0.17 0.0001

Webster �0.02 �0.09 �0.21 0.0263 0.0120 0.0001 �0.03 �0.09 �0.17 0.0007

Humbolt �0.03 �0.09 �0.19 0.1316 0.0378 0.0008 �0.02 �0.08 �0.18 0.0007

Wright �0.02 �0.10 �0.20 0.0288 0.0408 0.0001 �0.03 �0.11 �0.18 0.0001

Calhoun �0.05 �0.13 �0.21 0.0334 0.1174 0.0006 �0.06 �0.13 �0.20 0.0082

Kossuth 0.00 �0.08 �0.16 0.0634 0.1126 0.0012 �0.01 �0.07 �0.14 0.0007

* The Tukey–Kramer test was used for means comparisons of the corn yield fraction (yf) transformed to achieve a normal distribution (yf_t = [yf + 3]8/8). The one-sided

median test was used for median comparison between ‘‘high: and ‘‘low’’ corn yield fraction (yf). The symbols ‘‘h’’, ‘‘n’’, and ‘‘l’’ indicate high, neutral, and low.
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p = 0.0007; Table 3). The mean yf difference when removing the
polynomial component (i.e., Fig. 2c) only drops from 0.19 to 0.17
and the median yf difference drops from 0.15 to 0.10, confirming
that most of the cyclic effect on corn yield is quasi-biennial rather
than longer-term. Applying this same pattern to other regional
datasets, the yf mean difference between high and low yielding
years ranged from 0.16 to 0.22 for the six individual counties, two
bordering counties (Calhoun and Kossuth), and the state total
(p < 0.005 for all datasets; Table 3). Most of the regional data sets
also showed significant differences between high and neutral and
low and neutral group comparisons (p < 0.05; Table 3). In
comparison, long-term corn yield differences between La Niña

and El Niño years in the corn-belt are about 10% when nearly 60% of
years are classified as neutral (Phillips et al., 1999; Carlson et al.,
1996).

3.4. Spectral analysis of corn yield fraction estimated based on climate

indices

The multitaper power spectrum of the polynomial detrended
corn yield fraction series modelled by Eq. (2) over the 1952–2006
interval yields a prominent spectral peak centered at f = 0.39 cycles
per year (2.6 years; Fig. 3a). The F-statistic suggests two significant
underlying periods of 2.40 and 2.74 years (frequencies of 0.42 and
0.36 cycles per year; p < 0.11; Fig. 3a), which are similar to the
peaks of the observed ‘‘six county area’’ corn yield series discussed
above (frequencies of 0.43 and 0.38). The two records are highly
coherent in the quasi-biennial frequency range (Fig. 3b; approxi-
mately 0.4 cycles/years). These results suggest that significant
quasi-biennial variability in observed corn yield is related to large
scale climate variability.

4. Conclusions

Our results suggest the existence of a quasi-biennial pattern in
long-term Iowa corn yields related to large-scale climate
variability organized on this timescale. This conclusion should
be treated as an impetus for further research. However, we have
demonstrated that a statistical model based on underlying climate
variables yields skillful predictions of interannual variation in Iowa
corn yields. Given the importance of this cereal crop, refined
versions of this model might prove to be of economic and
environmental significance.

More research is needed partly because our results did not
identify a lag-relationship between NAO (compared to corn
planting date) and corn yield (Eq. (2)). However, a predictable
corn yield pattern with a difference of approximately 19% between
high and low yielding years will have economic and production
benefits. Stige et al. (2006) suggested that forecasts for NAO and
ENSO may help agro-pastoral production in Africa. Jones et al.
(2000) reported the potential value of ENSO-only climate forecasts
for adjusting corn management practices (planting date, hybrid, N
fertilizer amount, planting density) in Tifton, GA was modest at 2%
of expected margins. But economic potential was high with more
knowledge of the upcoming season’s weather with an estimated
upper limit of about 25% increase in margins (Jones et al., 2000).

Fig. 6. Story County and Eq. (1) estimated corn yield fraction (yf) as a function of

weather. The estimated yf was calculated with median weather variables for the

given figure except where adjusted according to x-axis variable. The linear trend

through the Eq. (1) predicted yf is presented (except for Eprecip) along with the

associated equation of the linear trend. (a) yf as a function of Erad for the lowest and

highest Lprecip. (b) yf as a function of Eprecip for the lowest and highest Lprecip and

Ltemp. (c) yf as a function of Lprecip for the lowest and highest Erad and Eprecip. (d)

yf as a function of Ltemp for the lowest and highest Eprecip.

Fig. 7. Difference between ‘‘high’’ and ‘‘low’’ yield fraction (yf) at various

categorization of ‘‘neutral’’ years. The yf is Eq. (2) predicted or observed ‘‘six

county’’. See text for categorization details.
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In addition to potential economic and production benefits,
tailoring agricultural management to climate forecasts may have a
substantial effect on the environment such as N loss. In North
Florida, dairy farms could decrease N leaching up to 25% without
reducing profit by adjusting management according to ENSO phases
(Cabrera et al., 2006). Also, tailoring peanut planting dates to ENSO
phases showed at least 10% lower N leaching in about 70% of years
(Mavromatis et al., 2002). Reported research is sparse on the impact
of adjusting agricultural management to climate forecasts on N loss
in the U.S. corn-belt. Small increases in crop N uptake (and corn
yield), however, can result in much more substantial decreases in
drainage N loss. For example, Malone and Ma (2009) report that 4%
greater crop N uptake can result in 30% less N in subsurface drainage
in northeastern Iowa. Small changes in nitrogen-containing
fertilizer use (e.g., adjusted according to SOI, QBO, and NAO) may
substantially reduce nitrate delivery to the Gulf of Mexico (McIsaac
et al., 2001). Therefore, refined versions of Eq. (2) may help guide
agricultural management decisions that reduce nitrate delivery to
streams and improve agricultural profitability within the U.S.
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