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The Lebwohl-Lasher model of the isotropic-nematic phase transition in 
liquid crystals is studied in higher dimensions, by Monte Carlo computer simu- 
lations on simple cubic lattices. The transition is found to become increasingly 
first-order, and rapidly approaches the mean-field results, which are exact in 
infinitely many dimensions. The discontinuities in internal energy and order 
parameter are measured by careful analysis of the computer simulation data, 
and the free energy of each system is calculated. An empirical scaling law is also 
found to describe the shift of the transition temperature from the mean-field 
theory result. To distinguish the effects of coordination number from those of 
dimension and connectivity, a simulation of an f.c.c, lattice in d = 3 dimensions 
is performed. In addition, a partial analysis is made of finite-size effects in the 
six-dimensional simulation. 

1. Introduction 

The isotropic-nematic transition in liquid crystals is a 'weak '  first-order phase 
transition in three dimensions (d = 3). Although more faithful models of nematogens 
exist [1, 2], we study here the Lebwohl-Lasher nearest neighbour spin model of the 
isotropic-nematic transition [3] because its transition properties show an uncanny 
resemblance to the actual transition. In two dimensions, this spin model displays a 
second-order transition. This work studies the transition in higher spatial dimen- 
sions. 

In any dimension, the transition could be first or second-order (or even some- 
thing else). If the transition remains first-order, as one expects, it will approach the 
result of mean-field theory as the dimension, and number of nearest neighbours, 
grow large. This result follows because in infinitely many dimensions each particle 
feels the average field due to an infinite number of neighbours. If the phase tran- 
sition were second-order, according to renormalization group theory, mean-field 
theory would be correct above some critical dimension d* (in this case 6) character- 
istic of the hamiltonian under study [-4]. Our simulations in d = 3, 4, 5, and 6 
confirm that the transition remains first-order, and approaches the mean-field result 
quite rapidly. The question then remains as to how the properties of a first-order 
transition approach the mean-field results as the spatial dimension of the system is 
increased. This is the central question addressed here. 

The Maier-Saupe model [5] of the istropic-nematic phase transition for liquid 
crystals is the appropriate model to investigate, since it is both simple and has a 
weak first-order transition in three dimensions [-3, 6], in marked contrast to mean- 
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field theory of the same model [5, 7]. We perform Monte Carlo simulations on the 
simplified Lebwohl-Lasher model, which consists of uniaxial 3-dimensional rod-like 
molecules (called 'spins '  by analogy with the Heisenberg ferromagnet) fixed on a 
regular lattice in d dimensions and obeying periodic boundary conditions. The spins 
interact via the potential energy 

U = - 5  ~ P2(cos 0o), (1) 
<i, j )  

where (i, j )  indicates that the sum is to be taken over all nearest neighbour pairs of 
spins, 0 o is the angle between neighbouring spin axes, and e sets the interaction 
energy scale. This model undergoes a transition from a disordered (isotropic) phase 
to an ordered (nematic) phase as the temperature is lowered. 

We consider simple cubic lattices of dimension d = 3, 4, 5, 6, for which the 
coordination number is z = 2d. The computational details of our simulations are 
summarized in w 2. In w 3 we study the effect of increasing dimension on the tran- 
sition behaviour of the Lebwohl-Lasher model, and in particular we compare 
results obtained for each dimension with the predictions of mean-field theory. To 
distinguish the effect of dimensionality and connectivity from a simple coordination 
number effect, we also perform simulations on a d = 3 f.c.c, lattice, which has 
coordination number z = 12. Therefore, we can make comparisons with both the 
d = 3 and z = 12 (d = 6) simple cubic lattice results. Finally, we consider finite-size 
effects by examining the six-dimensional simple cubic system with linear dimensions 
L = 3, 4, 5. In doing so, we test the validity of using a relatively small linear 
dimension in higher spatial dimensions to obtain the thermodynamic quantities of 
interest [8]. Our conclusions are collected in w 4. 

2. Computational details 

In our Monte Carlo simulations, a partially vectorized version of the standard 
Metropolis sampling algorithm [9] was used. For each system, two initial condi- 
tions were used, an ordered configuration for 'heat ing '  runs and a randomly orient- 
ed configuration for 'cooling'  runs. Quantities tabulated for each temperature 
include the reduced temperature, T* -- kT/e,  p* = 1/T*, the average internal energy 
per particle <U*) = ( U ) / N e ,  where N is the total number of spins, the average 
square internal energy per particle (U  .2)  = <U2)/(Ne) 2, and the long-range order 
parameter M = <P2(cos 0i)), where 0i is the angle between the axis of the ith spin 
and the director. Since the director, which measures the average orientation of the 
system, usually fluctuates over the course of a simulation, the order parameter has 
been calculated as the dominant eigenvalue of the orientation tensor 

Qij  -~ ~2<cicj> - �89 (2) 

where ci and cj refer to direction cosines of the spin axes, and i and j are taken over 
x, y, and z directions. The angle brackets indicate an ensemble average [10]. For 
systems of approximately 4000 spins, about 12000 cycles through the system were 
performed for each temperature, with 3000 cycles for equilibration. To ensure com- 
parable statistics for systems of different sizes, appropriately more cycles per tem- 
perature were taken for smaller systems. Because the calculation of the order 
parameter is computationally intensive, it was not performed at every cycle. Instead, 
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it was found that this calculation could be performed every 5 cycles without loss of 
vital information. 

The heat capacity of the system was calculated both from fluctuations in the 
internal energy, 

c~* = N/~*2((U . 2 )  - (U*)2) ,  (3) 

and from a numerical, spline derivative of the internal energy, although the former 
method proved to be more reliable. Approximately 40 steps in reciprocal tem- 
perature /~* were taken for each run, with smaller steps taken in the transition 
region. In addition, approximately twice as many cycles were taken for temperatures 
very close to the transition. Heating runs were started with all particles aligned 
along the director axis at a value for/~ of the order of/~* = 10 while cooling runs 
were started with an initially random configuration and a value of approximately 
/~* = 0.01. Starting configurations for subsequent temperatures were borrowed from 
the final configuration for the previous temperature. 

Spin configurations were stored as three direction cosines for each particle, and 
new values were generated randomly over the unit sphere to ensure proper sampling 
of phase space. Reasonable acceptance ratios were obtained for all temperatures of 
interest. All simulations were performed on a Cray XMP-14 using a partially vec- 
torized code. The Cray RANF routine was used to generate random numbers. For 
systems of about 4000 spins, both cooling and heating runs (at 80 temperatures) 
consumed approximately 9 hours of CPU time. Due to certain vector loops, run 
time was approximately linear in the number of spins. 

To facilitate comparison of results between different dimensions, we have 
adopted the following conventions. The energy (and hence the inverse temperature 
/if, since it is only the product of that two that enters into the calculations) scale with 
the coordination number z and hence with d. Consequently, we have normalized the 
energy and inverse temperature/~ to the familiar three-dimensional (or more preci- 
sely, z = 6) convention, used for example by Luckhurst and collaborators [10]. For 
example, in six dimensions (z = 12) the inverse temperature at the transition,/~*, 
has been multiplied by 2, and the jump in internal energy at the transition AUc has 
been divided by 2. 

3. Results and discussion 

3.1. Simple cubic lattice in many dimensions 

Simulations were performed on systems of 163 , 84 , 55 , and 46 spins in an attempt 
to keep the system size close to 4000 spins for all dimensions. In figure 1 we display, 
for each dimension, the internal energy U* as a function of temperature and inverse 
temperature/~* on a large scale. The order parameter M is shown on this same scale 
in figure 2. Precise values of the transition temperature T* = 1//~* were determined 
from the locations of the maxima in the heat capacities, shown in figure 3. As 
explained below, when hysteresis was observed from comparison of cooling and 
heating runs, the heating run gave the more accurate value for the transition tem- 
perature. The values of the discontinuity in the internal energy AUo were obtained 
by extrapolation of the points corresponding to the nematic (T* < T*) and iso- 
tropic (T* > T*) phases to the determined transition temperature. These extrapo- 
lations were assisted by using two independent smoothing spline fits, and are shown 
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Figure 1. 
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The internal energy U* as a function of the temperature 1/fl* and fl* for simple 
cubic lattices of dimension 6 (solid line), 5 (dashed), 4 (dotted) and 3 (dot-dashed), on a 
large scale. 
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Figure 3. The heat capacity C~* as a function of inverse temperature fl* for simple cubic 
lattices of dimension 6 (solid line), 5 (dashed), 4 (dotted) and 3 (dot-dashed).  
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Figure 5. The order parameter M as a function of the temperature //* for simple cubic 

lattices of dimension 6 (solid line), 5 (dashed), 4 (dotted) and 3 (dot-dashed), near fl*, 
with extrapolations corresponding to the isotropic and nematic phases. 

on a fine scale in figure 4, together with the actual simulation values in the nematic 
and isotropic phases. Similarly, the values of the order parameter  discontinuity at 
the transition Me were found by extrapolating the results of the nematic phase to 
the transition. These extrapolations were also made with the assistance of a smooth- 
ing spline fit, and are shown in figure 5 along with the actual simulation results in 
both the nematic and isotropic phases. 

The transition values T * , / / * ,  Me, and the transition energy AUc as a function 
of dimension d are collected in table 1, together with the results from mean-field 
theory. The uncertainties in the location of the transition and in the extrapolations 
are also indicated. Following the work of Lebwohl and Lasher [3], we calculated 

Table 1. Transition properties for simple cubic lattices. 

d ~* M~ AVe To* 

3 0"890 + 0"002 0"350 + 0"020 0.130 _ 0-020 1"124 4- 0-003 
4 0-834 + 0"001 0"370 + 0"010 0"270 + 0-010 1"199 ___ 0"002 
5 0"812 + 0"002 0"380 ___ 0"005 0"320 + 0"010 1"232 + 0"003 
6 0-800 + 0-002 0-390 + 0-005 0-360 + 0.005 1"250 + 0-003 

MF 0"757 0"429 0"551 1"321 
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the free energy of the system from the formulae 

~f(it) = (~.f)h,,h -- dit< U),  (4) 
hish 

Itf(it) = (itf),ow + dit< U>, (5) 
low 

coupled with both analytically evaluated low and high p limits of the free energy (see 
Appendix) and the simulation values of <U). For a check on the location of the 
phase transition, one can determine It* from the value of It* at which a 'kink '  in the 
free energy occurs, and the discontinuity in the energy of transition, AUc, from the 
slope o f f  at this point. However, this method involves taking the difference of two 
large numbers, and in practice, leads to results inferior to those obtained above. The 
free energies of the systems are plotted in figure 6. 

As the dimension increases, the transition becomes increasingly first-order in 
character. As shown in figure 3, even for finite-sized samples the heat capacity 
displays a more pronounced divergence for higher dimensions, and, as shown in 
figure 4, the discontinuity in the energy becomes larger with increasing dimension. 
This is also demonstrated by the more pronounced kink in the free energies of figure 
6 in higher dimensions. In addition, the order parameter drops more abruptly to 
zero in the isotropic phase in higher dimensions (figure 5), also indicative of increas- 
ingly first-order behaviour. There is a rapid approach to the predictions of mean- 
field theory as the dimension is increased, as shown in table 2. 
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Table 2. Comparison with mean-field theory. 

tic* - -  fl*MV M,MF - -  Mc AUcM v -- A U  c T*MF - -  T *  

d fl*M~ M~MV AUcMF Tc*MF 

3 0"176 0"184 0.764 0"149 
4 0"102 0"149 0"510 0"092 
5 0"073 O" 114 0"419 0"067 
6 0"057 0"091 0-347 0'057 

To analyse the shift in transition temperature with dimension, we have simply 
a s s u m e d  that the deviation from the mean-field result follows a power law, similar to 
that for finite-size scaling of a second-order transition temperature in a fixed dimen- 
sion. Specifically, we assume 

T*(d  = oo) - T*(d) oc d -• (6) 

for some exponent #, where by the previous argument we can associate T * ( d  = oo) 

with the mean-field result T* = 1.321. Of course, such a scaling law could only hold 
for a first-order transition since it presupposes that a finite upper critical dimension 
does not exist. Empirically, the result is quite surprising. In figure 7 we display the 
quantity W = - I n  ( T * ( d  = c~) - -  T * (d ) )  as a function of In d, which should give a 
line of slope #. From our limited data, it appears that the presumed power law 
scaling holds, with an exponent very close to # = 1.5. Although the points corre- 
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Table 3. Transition properties for f.c.c, d = 3 and simple cubic lattices. 

501 

Lattice fl* M c AUc T* 

SC d = 3 0-890 __+ 0-002 0-350 + 0.020 0.130 ___ 0.020 1.124 + 0-003 
SC d = 4 0.834 ___ 0.001 0.370 __+ 0.010 0.270 + 0.010 1.199 + 0.002 
SC d = 6 0.800 __+ 0-002 0.390 __+ 0-005 0.360 ___ 0.005 1.250 + 0.003 

f.c.c, d = 3 0.831 _ 0.002 0.350 _ 0.020 0.160 + 0.020 1.203 + 0.003 

sponding to d = 3 and d = 4 do not fall on the line within the uncertainties indi- 
cated, one would expect the scaling to be exact only in the asymptotic limit d ~ ~ ,  
and hence points corresponding to lower values of d might stray from the assumed 
behaviour. A simulation in seven dimensions, limited to the transition region, for a 
system of 47 spins, also yields agreement with the empirical scaling law. The value of 
the slope # is apparently equal to the spin dimension divided by two. Since we 
known of no theoretical arguments for this phenomenon, other than the plausibility 
of some kind of power-law scaling for the shift in transition temperature from the 
mean-field result, we offer it only as an empirical result from the simulations. 

3.2. Comparison of  f.c.c, d = 3 with simple cubic 

To investigate the relative importance of dimension, connectivity, and coordi- 
nation number  in determining the transition behaviour of the model nematogens, 
we have performed Monte  Carlo simulations on a face centred cubic (f.c.c.) lattice of 
4 x 103 spins, which has both dimension d = 3 and coordination number  z = 12, 
and a different connectivity from the simple cubic lattices [11]. In table 3 we display 
the results for the d = 3 f.c.c, system, together with those simple cubic in d = 3, 4, 6 
for comparison. 

We note that the transition properties on the f.c.c, lattice are much more similar 
to the d = 3 and d = 4 simple cubic lattices than to the d = 6 simple cubic lattice, 
which has the same coordination number. In addition, figure 8 shows that the 
behaviour of the energy as a function of inverse temperature fl* is qualitatively 
much more like that for the d = 3 simple cubic than the d = 6 simple cubic. Hence 
we have shown that dimension plays a more important  role than coordination 
number or connectivity in determining the transition behaviour of the model nema- 
togen, and that the results of the previous section may be interpreted as an effect of 
dimension. 

3.3. Finite-size effects 

We have made a partial study of finite-size effects by examining the d = 6 simple 
cubic system with linear dimensions L = 3, 4, and 5. Theoretically, for a first-order 
transition one expects the shift of the transition temperature from the thermodyna-  
mic limit to scale with the square root  of the system volume [12] according to the 
relation 

T*,(L = oo) - T*~(L) oc L -a/2. (7) 

One also expects a smearing out of the transition associated with this shift, 
observed, for example, by a smoothing out of the discontinuity in the energy near 
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Figure 8. The internal energy U* as a function of the inverse temperature fl* for simple 
cubic lattices of dimension d = 6 (full line) and d = 3 (dot-dashed), and for an f.c.c. 
lattice in d = 3 (dotted line). 

the transition. Figure 9 illustrates this phenomenon for our case. The simulations 
performed do not provide the temperature resolution necessary for an accurate 
verification of equation (7). Rather, we assume that the equation holds, and use it 
along with our data to extrapolate the transition temperature to the thermodynamic 
limit corresponding to L = oo. Table 4 shows the transition temperature obtained 
from the peak in the heat capacity of the heating runs, corresponding to the differ- 
ent linear dimensions, along with the approximate value of T* (L = ~ )  given by 
equation (7). We can see that our result for linear dimension L = 4 gives the correct 
transition temperature within the uncertainty of our value. In addition, from figure 
9 one sees that L = 4 and L = 5 yield essentially the same discontinuity in the 
energy at the transition. We conclude that our system of size 46 is large enough to 
predict correct  thermodynamic quantities. Since the scaling law only depends on the 
volume of the system and results for different dimensions were all obtained on 

Table 4. Sealing in d = 6 simple cubic lattice. 

3 0-802 _ 0.002 1"247 _ 0-003 
4 0-800 _ 0.002 1"250 _ 0-003 
5 0-799 _+ 0-002 1"252 _ 0-003 

oo 0"798 1-253 

L fl* T~* 
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and ' cooling' runs of simple cubic systems in d = 6, with linear dimension L = 5 (solid 
line), L = 4 (dotted line) and L = 3 (dot-dashed line). 

systems of approximately the same size, we can conclude also that the results for all 
dimensions are suitably converged to the thermodynamic limit. 

As o n e  can observe in figure 9, hysteresis is well pronounced for L = 5, but 
barely detectable for L = 4, and absent, within fluctuations, for L - - 3 .  This is 
expected, since the system relaxation time increases much faster than linearly with 
the size of the system, and hence in large systems it is computationally difficult to 
equilibrate the system near the transition. One might ask how we determined the 
transition temperature for the L = 6 system whien the entire region is obscured by 
hysteresis. Clearly, when hysteresis is present one needs to know whether the 
heating or cooling run represents more accurately the equilibrium path of the 
system. One can also induce hysteresis by varying the rate at which the system is 
heated or cooled. By observing that the cooling curve collapses to the heating curve 
for a given system as the rate of heating and cooling is decreased, we determined 
that the heating run accurately predicts the location of the transition when hyster- 
esis is present. This allowed us to determine the correct transition temperature for 
the 5 6 system even though hysteresis is present. 

4. Concluding remarks 
The transition properties of the spin model of the isotropic-nematic transition 

approach the mean-field results monotonically as the dimensionality is increased. 
From our data, there is an apparent power law scaling which describes the shift of 
the transition temperature with dimension from the mean-field result. If such a 
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'scaling law' exists for first-order transitions, it will have practical implications: 
given the mean-field result for the transition temperature, one could extrapolate 
back to the physical dimension of a given system to find the actual transition 
temperature. For this reason, we feel that investigation of this phenomenon for 
other first-order transitions is worthwhile. 

From our studies, the isotropic-nematic transition is seen to be a very special 
consequence of three spatial dimensions, in which a tiny first-order transition-- 
which is almost second-order--is observed. In two and four dimensions, the tran- 
sition is cleanly second and first-order, respectively. A correct theoretical description 
of this'  small' first-order transition in d = 3 remains to be found. 

This research was supported in part by the Petroleum Research Fund, adminis- 
tered by the American Chemical Society, and in part by Ford Research and NSF 
through the PYI program. 

Appendix 

Free energy calculation 
The calculation of the low and high beta expansions of the free energy follows 

the derivation of Lebwohl and Lasher [3], generalized to arbitrary lattices and 
spatial dimensions. Here we summarize only the results of the calculations, noting 
where the results differ from the d = 3 simple cubic case considered by Lebwohl and 
Lasher, and give our results for the simple cubic lattice in d dimensions and for the 
f.c.c, lattice. 

Low-fie expansion 
We start from the N-particle partition function 

zN=f{,=~-I~ df~''~4n J exp [fie<~>P2(cos 0o) ], ' (A1) 

where f~ are the angular coordinates of the ith spin, and the integration is over the 
orientations of the N spins. We then expand Zs for small fie as a power series in fie 
to give 

41r J[_ + fie ~ P2(cos 0 o) + �89 2 ~ ~ P2(cos O,#)P2(cos Ok,) 
i=  1 (i, j )  (i, j> (k, l)  

+ 6-t(fie) a E E Z P2( c~ 0,#)P2(cos 0k,)P2(cos 0=.) +...1, (A 2) 
(i, j )  (k, l)  (m, n) _l 

where the sums run over all pairs of nearest neighbours. The first term of (A 2) is 
unity, and the second term is zero. Only the terms of the form ['P2(cos Oij)] 2 contrib- 
ute to the third term of (A 2). In addition, the fourth term contains terms of the form 
[P2(cOS Oij)-] 3 which do not occur for simple cubic lattices, but which do occur in 
general and result from the existence of closed triangles of nearest neighbour inter- 
actions. 

Evaluating these integrals gives, for simple cubic lattices in d dimensions, 

Nd Nd 
Z~ = 1 + - ~  (fie) 2 + 1-~ (fle)s + . . . .  (A 3) 
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and for the f.c.c, lattice, 

Z~ r = 1 + 3___ (fie)2 + ~ -  + -~](fie) + . . . ,  (A 4) 

where the second coefficient of (fie) 3 is the contribution from the closed triangles of 
interactions. The free energy per particle fif/d is 

fso In ZN 
fie -~e = - N-.o~lim - -dN - 1-L~176 - T~s(fie)3 + " ' "  

f fcc 

f i ~  ~ = _ ~ - o ( f i e )  ~ - ~ - ~ ( f i e )  3 + . . .  

and the average energy per particle ( U ) / d  is 

(t:)s-----~ - a [ f i ~ t f ~ ~  - - ] ( f i e )  - ~ ( f i e )  ~ + . . .  
d e  ~ ( f i e )  

and 

( u )  foo 

6e 
- -  - - - ~ ( f i e )  - ~ - % ~ ( ~ ) ~  + . . . .  

(A 5) 

(A 6) 

(A 7) 

(A8) 

Equations (A 7) and (A 8) compare well with the Monte Carlo energies for 13" ~< 0.4. 

High-fie expansion 
Again starting from N-particle partition function (A 1), for fie sufficiently large, 

we assume that all spins are either parallel or antiparallel to the director. Following 
Lebwohl and Lasher [3], we expand the partition function to second order in the 
variables {xi = sin 0i cos tki, Yi = sin 01 sin ~bi}, i = 1, 2 . . . . .  N, where 0i is the angle 
between the director and the orientation vector of the ith spin. Given the invariance 
of (A 1) under simultaneous rotation of all molecules of the lattice, and with spin 1 
chosen to lie along the Z axis, the partition function becomes 

41t J 6(xl)6(Yl) 

where 6 is the Dirac 6 function and N is the number of spins in the system. The 
factor of 2 N comes from the degeneracy of the ground state since each spin can be 
either ' u p '  or ' down '  with respect to the director. Rearranging the constant factors, 
we note that the integral is just the product of two identical integrals over the 
separate variables {xi} and {yi}. Hence the partition function can now be written as 

2 
ZN = (2n) N _ t 12 exp [fieNz/2], (A 10) 

where z is the number of nearest neighbours per lattice site and 

IN=f?oodxN6(xo) exp[ - -~ f i e~(x . - - x , , , ) z  ]. (Al l )  
( n , m )  
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The index notation has been changed to show explicitly that the sums are over the 
lattice, and for convenience spin number 1 is chosen to be the spin at the origin 0. 
We change t o '  spin-wave' variables, defined by 

1 
x, - x/N ~ ah exp (ik.  n) (A 12) 

Let {z} be the set of real space vectors pointing to the nearest neighbours of a given 
lattice point. The sum over nearest neighbours in (A 11) becomes 

(x, - x,,) 2 = ~ l ak 12 ~ (1 - cos k .  ~) (g 13) 
(n,  m> k x 

The change of variables from {x,} to {at} given by equation (A 12) is a unitary one, 
and hence the magnitude of the jacobian is unity. Since the integral in (A 11) is real, 
we ignore the phase factors and the {at} and choose limits of integration to yield a 
positive real result: 

= | 6 1 IN f_| ( - ~ / - ~ a t )  exp[--~2f le~a2~(1 c o s k . x ) ] .  (A14) 

When this integral is evaluated, the partition function becomes 

ZN=(6fle) exp( f leNz/2X3fl~)-NNIJ ' (~l--cosk.x)  -1. (A15) 

In the limit N --* oo the free energy is 

# f  = - �89 + In (3#~) + dk In z - ~ cos  k .  x , (A 16) 

where V~ is the volume of the real space unit cell and the integral is taken over a 
unit cell in reciprocal space. For the cases of a d dimensional simple cubic lattice 
and the f.c.c, lattice, the free energies per particle are 

1 1 -~ flf = - fie + -~ In fie + K(t0, (simple cubic) (A 17) 

and 

~[Jf = - fie + ~ In [Je + K(f.c.c.), (f.c.c. lattice) (A 18) 

where the constant term K depends only on the lattice type and dimensionality. The 
integrals have been evaluated numerically, taking special care with the logarithmic 
divergence in the integrand of (A 16), and the values of the constant K for simple 
cubic lattices with d = 2, . . . .  7 and the f.c.c, lattice are given in table A 1. For tho 

TaMe A1. Free energyconstant K. 

d Constant K 

2 1.13243 
3 0"92400 
4 0"77458 
5 0"66822 
6 0"58921 
7 0-52818 

~c.c.  0"58391 
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internal energy we obtain 

2<u> 2 
- - - 1 + ~  

Z~ Z~E 

This expression is valid for any lattice. 

(A 19) 
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