
0123456789();: 

There has been an increasing desire for climatic informa-
tion on timescales from weeks to months, seasons and 
years. Such information offers clear benefits to society 
and various stakeholders alike. For instance, prediction 
of the hydroclimate could allow for better water resource 
management and improved agricultural maintenance, 
whereas temperature and wind predictions could pro-
vide critical information for infrastructure planning 
and expected energy consumption. To obtain this cli-
matic information, initialized predictions on various 
near-​term timescales must be used.

Initialized Earth System prediction describes a suite 
of climate model simulations wherein the starting con-
ditions are set as close to observations as possible and 
the model is run forward for up to 10 years1. Internally 
generated, naturally occurring variability is therefore 

considered a key aspect of these time-​evolving cli
mate predictions2. They differ from uninitialized  
simulations — or climate change projections — where 
internal variability is removed through ensemble 
averaging, and focus is instead given to quantifying 
the effects of external forcing such as anthropogenic  
greenhouse gases3,4.

Given the duration of simulations, initialized pre-
dictions span various timescales (Fig. 1a): subseasonal 
to seasonal (S2S; ~2 weeks–2 months)5,6, seasonal to 
interannual (S2I; 2–12 months)7 and seasonal to dec-
adal (S2D; 3 months–10 years)1,2. In each case, efforts 
have focused on climate phenomena that also operate 
on similar timescales. For example, S2S research has 
concentrated on the Madden–Julian Oscillation (MJO) 
and sudden stratospheric warmings (SSWs); S2I on the 
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El Niño–Southern Oscillation (ENSO), North Atlantic 
Oscillation (NAO), Indian Ocean Dipole (IOD), 
Southern Annular Mode (SAM) and Quasi-​Biennial 
Oscillation (QBO); and S2D on slowly evolving oceanic 
processes such as Pacific decadal variability (PDV) and 
Atlantic multi-​decadal variability (AMV).

Distinct communities have therefore formed to coor-
dinate research and perform initialized predictions on 

each timescale. Efforts such as the S2S Prediction Project 
and Database5 and the Subseasonal Experiment (SubX6) 
emerged for S2S; the North American Multi-​Model 
Ensemble7, the Asia-​Pacific Economic Cooperation 
(APEC) Climate Center (APCC), and the Copernicus 
Climate Change Service for S2I; and sets of hind-
casts and predictions as part of the Coupled Model 
Intercomparison Project phase 5 (CMIP5)1,2 and CMIP6 
(ref.8) for S2D.

Although these communities are often separate, how-
ever, they all rely on similar methodologies (Table 1; see 
Supplementary Tables 1–3). Thus, there is potential for 
‘seamless prediction’9, whereby one framework can be 
used to address prediction across all timescales, with 
skill increasingly associated with external forcing as sim-
ulations progress10 (Fig. 1b). Yet, in practice, community 
differences with regards to initialization frequency, for 
example, make seamless prediction challenging1,2.

In this Review, we bring together research on ini-
tialized predictions on timescales of weeks to years. We 
begin by outlining current methodologies for initialized 
predictions, incorporating discussion of the process, 
ensemble size, verification and prediction skill. We sub-
sequently outline prediction on S2S, S2I and S2D time
scales, before discussing priorities for future research 
that will increase the feasibility for seamless prediction.

Making predictions
S2I research using initialized prediction has been taking 
place since the late 1980s (ref.11). In contrast, it was not 
until 20 years later that initialized S2D climate predictions 
began, in turn, initiating a rapid acceleration of research 
from which operational systems are now routinely 
produced12. We begin by describing the process of initial-
ized prediction, focusing on the methodological aspects 
involving forecast verification and measures of predic-
tion skill (the level of agreement between an initialized 
prediction and the observed state it is meant to predict).

Process of initialized prediction. Predictions for S2S, S2I 
and S2D timescales, ranging from weeks to years, use 
numerical models with components of (at least) atmos-
phere, ocean, land and sea ice that are started from a 
particular observed state. The process of bringing the 
model components into close correspondence with that 
observed state is termed initialization, and predictions 
that are started from such observed states are referred 
to as initialized predictions. There are currently many 
activities taking place in the S2S, S2I and S2D commu-
nities with regards to initialized prediction, with key dif-
ferences amongst centres regarding how models are used 
(Table 1; see Supplementary Tables 1–3).

One key difference between the subseasonal and 
longer timescale systems is the origin of the model. 
Many S2S (and some S2I) prediction systems originate 
in the numerical weather prediction community. As such, 
they tend to have the highest horizontal resolution in the 
atmosphere, largely ~0.25–0.5° (Table 1). Atmospheric 
initialization in these numerical weather prediction- 
derived models uses data assimilation13, such as 3D vari-
ational assimilation (as in the CMA model). Moreover, to 
produce the initial perturbations for ensemble generation, 

Key points

•	Initialization methods vary greatly across different prediction timescales, creating 
difficulties for seamless prediction.

•	Model error and drift limit predictability across all timescales. Although higher 
resolution models show promise in reducing these errors, improvements in physical 
parameterizations are needed to improve predictability.

•	The effects of land processes, interactions across various ocean basins and the role 	
of stratospheric processes in predictability are not well understood.

•	Predictability on seasonal to decadal timescales is largely associated with 
predictability of the major modes of variability in the atmosphere and the ocean.

•	Evolution of Earth System models will lead to predictability of more societal-​relevant 
variables spanning multiple parts of the Earth System.
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they sometimes use data assimilation with an ensem-
ble Kalman filter14 (as in the ECCC model) or singular 
vectors15 (as in the JMA model). In comparison, most S2I, 
and all but one S2D, prediction systems are based on cli-
mate or Earth System models (ESMs) previously used for 
IPCC climate projections. In these cases, the majority of 
models have a horizontal resolution of ~0.5–1° (Table 1).

In addition to differences in the models and their 
resolution across prediction timescales, contrasts are 
also evident in the components that are initialized and 

the degree of coupling between Earth System compo-
nents. In S2S predictions, for example, coupling between 
the atmosphere, ocean, land and sea ice is not considered 
crucial (Fig. 1a). As such, only a small number of models 
initialize the ocean and employ atmosphere–ocean cou-
pling, but the majority initialize land surface conditions 
(Supplementary Table 1). For S2D predictions, however, 
oceanic processes are vital and, as a result, all models ini-
tialize the ocean and have at least partial coupling with 
the atmosphere and sea ice; only a fraction initialize the 
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Fig. 1 | timescales and processes involved with initialized predictions. a | Timescales and sources of predictability  
for subseasonal to seasonal (S2S), seasonal to interannual (S2I) and seasonal to decadal (S2D) timescales. Lighter green 
shading indicates larger uncertainty. b | Skill in predicting the upper 300 m of the Atlantic Ocean temperature, as 
measured by relative entropy, in initialized models (blue) and those forced by RCP4.5 (red). Skill is high for initialized 
predictions on S2S and S2I timescales (<2 years), but decreases towards S2D (years 3–9), after which time the skill from 
external forcing increases. AMV, Atlantic multi-​decadal variability; ENSO, El Niño–Southern Oscillation; GHG, greenhouse 
gas; GMST, global mean surface temperature; MJO, Madden–Julian Oscillation; NAO, North Atlantic Oscillation; PDV, 
Pacific decadal variability; QBO, Quasi-​Biennial Oscillation; SSW, sudden stratospheric warming. Panel b adapted with 
permission from ref.10, Wiley ©2012. American Geophysical Union. All Rights Reserved.
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atmosphere and land surface (Supplementary Table 3). 
As S2I falls in the time window where predictability 
comes from all Earth System components (Fig. 1a), care 
is typically taken to initialize each of them.

Atmospheric initialization is often achieved by 
interpolating an existing analysis to the model grid and 
generating an ensemble spread using the random field 
perturbation method16 (as in CESM1 for S2S), the lagged 
ensemble method17,18 (as in CCSM3) or nudging to rea-
nalyses in coupled mode19 (as in the CCCma model). 
Various approaches have also been used to initialize the 
ocean state, including a hindcast spin-​up in an ocean 
forced by observed atmospheric conditions20, nudging 
the ocean model to some observed ocean state21 or using 
full ocean data assimilation22. Land variables are initial-
ized either by assimilation of land observations23 or by 
running an offline land-​only model that is forced with 
observed atmospheric conditions24. The initialization 
strategy also differs between the shorter and longer-​term 
prediction models. All S2S and S2I prediction models 
use full fields (such as sea surface temperature (SST)). 
By contrast, about half of the S2D modes use anomaly 
initialization, meaning an initial condition is construc
ted by adding observed (or reanalysis) anomalies to the 
model’s climatology in order to minimize initialization 
shock and model drift25–27.

As individual model components are often initial-
ized in different ways, there is frequently no coupling 
between initial conditions for various parts of the Earth 
System, thereby creating an imbalance in the initial 
state of the model. New methodologies, such as weakly 
coupled and strongly coupled data assimilation, offer 
promising approaches to reduce initialization shock 
and imbalance in the model28. In the weakly coupled 
approach, the assimilation is applied to each of the com-
ponents of the coupled model independently, whereas 
interaction between the components is provided by the 
coupled forecasting system28. In the strongly coupled 
method, however, assimilation is applied to the full Earth 
System state simultaneously, treating the coupled system 
as a single integrated system28.

There are currently very few modelling centres that 
have been able to apply seamless prediction owing to 
numerous practical aspects (including the initialization 

method, initialization frequency, number of ensemble 
members, among others). The most seamless system 
is currently operated by the UK Met Office, which is 
providing S2S, S2I and S2D forecasts operationally 
using almost identical configurations of the model  
for all prediction systems29. NCAR, although not an 
operational centre, is also using the same models, 
CESM1 and CESM2, to generate S2S, S2I and S2D 
hindcasts (and predictions for research purposes) using 
the same modelling framework, although at this time  
initialization details vary among the three prediction 
systems.

Ensemble size. Ensemble size is an important aspect 
determining predictive skill and reliability. In most pre-
diction systems, ensemble sizes typically range between 
10 and 50 (Table 1). There is potential to increase the 
number of ensembles by combining those from multi
ple systems30 or time-​lagged ensembles31, or using 
other techniques such as subsampling32,33 to improve 
the ensemble properties. Typically, the more ensemble 
members, the higher the anomaly correlation coeffi-
cient (ACC), a measure of prediction skill. For example, 
on S2S timescales, the ACC of global surface air tem-
perature over land is ~0.29 when using only 4 CESM1 
hindcast ensemble members34, increasing to ~0.33 for  
8 members and ~0.36 for 16 members (Fig. 2a).

Large ensembles are also advantageous for improving 
seasonal prediction skill of the NAO35, including on S2D 
timescales33,36. For example, ACC values are ~0.6 for an 
average of years 2–8 when using 40 ensemble members37 
(Fig. 2b). Further increases in multi-​year NAO skill with 
an ACC of 0.8 are possible with a lagged ensemble of 
several hundred members33 as a result of the modelled 
signal to noise ratio being too small.

There are consequences and trade-​offs in terms of 
computing costs when using more ensemble mem-
bers. For instance, an S2S reforecast could run 16 years 
(SubX) × 4 members × 2 months long × weekly start 
dates for ~600 model years; an S2I example could run 
30 years × 9 members × 1 year long × 4 start dates per year 
for ~1,000 model years; and an S2D example (DCPP) 
could run 60 years × 10 members × 10 years long for 
~6,000 model years.

Table 1 | General characteristics of models used for S2S, S2i and S2D initialized predictionsa

timescale number 
of models

atmospheric 
resolution 
and levels

ocean 
resolution 
and levels

Components 
initialized

initialization number of 
ensembles

Prediction 
length

S2S 18 25–200 km

17–91 levels

8–200 km

25–75 
levels

Most initialize 
atmosphere, ocean, 
land and sea ice

Full field 4–51 31–62 days

S2I 13 36–200 km

24–95 levels

25–200 km

24–74 
levels

All initialize 
atmosphere, ocean, 
land and sea ice

Full field 10–51 6–12 months

S2D 14 50–200 km

26–95 levels

25–100 km

30–75 
levels

Models range from 
initializing only 
ocean to initializing 
atmosphere, ocean, 
land and sea ice

Full field, 
anomaly

10–40 5–10 years

S2D, seasonal to decadal; S2I, seasonal to interannual; S2S, subseasonal to seasonal. aA full and more complete account of model 
features is given in Supplementary Tables 1, 2 and 3 for S2S, S2I and S2D models, respectively.
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Verification using observations. A key element of initial-
ized prediction is having a solid understanding of the 
climate phenomena that are being predicted. Analyses 
of observations in comparison with the model simula-
tions are thus required. On S2S and S2I timescales, the 
observational record provides a good source of data to 
verify initialized hindcasts. For example, observations 
cover roughly 30 ENSO events and as many as 300 MJO 
cycles. However, these data have their limitations. For 
instance, 3D observations of the atmosphere and ocean 
are desired for prediction verification, for understanding 
of processes and mechanisms, and for initialization of 
the predictions in the first place38. Yet such 3D gridded 

data are limited to the period of the satellite record (dat-
ing from the late 1970s) and to reanalyses that assim-
ilate all available observations. Moreover, although 
several ENSO (and similar timescale) events have been 
observed, these can exhibit different expressions39 and 
undergo large decadal to millennial variations40–42, 
requiring a long observational record to perform robust 
analyses.

Researchers in the field of initialized Earth System 
prediction on S2D timescales often cite the short obser-
vational record as a factor inhibiting understanding. 
For example, with reliable observations limited to the 
latter half of the twentieth century43, only approximately 
three PDV or AMV transitions have occurred by which 
to compare predictions. Although some observations 
are available earlier in the twentieth century, these are 
sparse and reanalyses are highly uncertain, making con-
sistent comparisons of prediction skill between the pre 
and post-​satellite eras difficult. Added to that, subsurface 
ocean observations and critical state atmospheric varia-
bles (such as surface winds) are crucial to understanding 
slow variations in the climate system44, but such obser-
vations also have a very short duration. Moreover, it is 
also difficult to objectively separate forced (natural and 
anthropogenic) and internal decadal to multi-​decadal 
climate variability, adding further challenges for S2D 
prediction verification and triggering debate on best 
practices for signal separation45–48.

Nevertheless, efforts are underway to improve meth-
odological approaches and data provisions for prediction 
verification. The crucial need for better observations of 
the full depth of the ocean have started to be addressed 
by Argo floats, first for the upper 2,000 m (ref.49) but with 
plans to be expanded to the full ocean depth50.

Proxy-​based reconstructions are also increasingly 
available, shedding light on processes associated with 
interannual and decadal timescales of variability51 
beyond that possible by instrumental observations. 
Indeed, the particular limitations of instrumental data 
length and coverage for verification of S2D predictions 
have pointed to palaeoclimate reconstructions — using 
trees, corals and speleothems — to extend obser-
vations and provide further realizations of decadal 
variability40,42,52–56 (Fig. 3). Additionally, such records can 
provide insights into the physical mechanisms asso-
ciated with this variability, including westerly wind 
anomalies51, upwelling, gyre circulation57 and links 
among major modes of variability58. Together with fur-
ther advances in palaeoclimate research — including 
palaeoclimate synthesis59–62, palaeo data assimilation 
techniques63–65 and development and expansion of proxy 
system models and toolboxes66,67 — palaeoclimate data 
will not only help with the verification of climate model 
simulations, particularly on the S2D timescale, but also 
provide context for initialized predictions by providing 
insights into the timescales of variability beyond the 
instrumental record.

Bias correction and prediction skill. To account for 
model drifts and biases, the skill of initialized predic-
tions is typically evaluated in terms of forecast time-​
dependent anomalies that are departures from some 
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measure of mean climate. However, a prediction will 
drift rapidly from the initial observed state towards its 
own climatology owing to model error. These drifts start 
almost immediately in a prediction, and by lead year 1 
are already considerable (Fig. 4).

The calculation of anomalies and correction of model 
biases are addressed together, typically by calculating 
and removing the model climatology. For S2S predic-
tions, the common methodology is to calculate a lead 
time-​dependent model climatology from a set of hind-
casts and to compute anomalies from this climatology. 
However, such a procedure is complicated owing to the 
inhomogeneous nature of current subseasonal predic-
tion systems6. The climatology for S2I predictions is 
similarly accomplished by averaging over all years of 
the hindcast for a particular start time and lead or target 
time68, thereby assuming stationarity of biases and drifts 
in the predictions.

For S2D predictions, model drift is acute and is 
addressed by multiple approaches for computing 
anomalies (Fig. 4). One method is to calculate the model 

climatology of drifts from hindcasts over a prediction 
period of interest (for example, the average of lead 
years 3–7) and, then, subtract that climatology from each 
prediction for years 3–7 (ref.69); this approach works well 
for short timescale predictions where externally forced 
trends are less of a factor, but can be problematic for 
longer timescales. An alternative method is to compute 
a mean time-​evolving drift from a set of hindcasts, sub-
tract that mean drift from a prediction and compute 
anomalies as differences from the drift-​adjusted pre-
diction and time period (such as the previous 15-​year 
average) immediately prior to the prediction70. This 
alternative approach better reduces the effects of an 
externally forced trend, but raises the issue of how 
great a role the recent observed period should play in 
prediction verification. When long-​term trends in the 
hindcasts differ from observations, a further method is 
to correct biases in the trends in addition to those in 
the mean model climatology over the hindcast period71, 
although such an approach can yield an overestimation 
of the skill of the system.
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Models can also underestimate the magnitude of 
predictable signals relative to unpredictable internal 
variability, especially at seasonal and longer timescales 
in the extratropical North Atlantic sector33. This under-
estimation leads to the counter-​intuitive implication that 
models are better at predicting the real climate variability 
than they are at predicting themselves, a phenomenon 
termed the ‘signal to noise paradox’, when observed 
signal to noise ratios are larger than those in models72. 
Given that such features also occur in uninitialized cli-
mate simulations of the historical period73,74, and poten-
tially in modelled responses to volcanoes and solar 
variations72, they are not believed to arise from initial-
ization itself. As a result of the signal to noise paradox, 
it is necessary to take the mean of a very large ensem-
ble to extract the predictable signal and then adjust its 
variance33.

Although discrepancies between signal to noise 
measures in models and observations highlight an 
important model deficiency, they also imply an opti-
mistic potential to use adjusted climate model outputs 
to predict the observed system33,36. Additionally, there 
has been growing interest in the influence of decadal 
variability on the predictability and skill of seasonal 
forecasts75. Sometimes, the impact of this variability can 
obscure the gradual skill improvements that are found 
from advancing the science and modelling76.

Clearly, a major challenge for initialized prediction at 
any timescale is the mean drift of the model away from 
its initialized state to its preferred systematic error state 
(Fig. 4). All of the efforts at bias adjustment and drift 

correction arise from this fundamental characteristic of 
model error, but improvements in initialized prediction 
require increased understanding of the processes and 
mechanisms at work in the climate system in order to 
reduce model error.

S2S initialized predictions
All initialized predictions start with a particular obser
ved state that could contribute to some combination of 
externally forced and internally generated variability. 
However, owing to the relatively short timescales, sub-
seasonal (S2S) predictability is largely an initial value 
problem in which the atmosphere, ocean, land and sea 
ice contribute to prediction skill through their mem-
ory of the initial state, and not external forcing (Fig. 1). 
Considerable resources are therefore allocated to initial-
ization of atmosphere and land, including generation of 
ensemble spread. Ocean initialization and coupling are 
additionally important, especially in tropical regions, 
where sources of predictability can come from modes of 
variability such as the MJO6,77, as well as the stratosphere, 
both of which are now discussed.

Modes of variability. The MJO is recognized as one of 
the leading sources of S2S predictability78 owing to the 
strong interaction between the tropics and extratropics 
on subseasonal timescales79. For example, forecast models 
involved in the SubX and the S2S Prediction Project can 
predict the MJO skilfully up to 4 weeks5,80,81. Furthermore, 
skill has been shown in predicting the MJO in a multi-​
model framework consisting of six SubX models for 
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week 3 predictions averaged over days 15–21 (ref.6) (Fig. 5), 
whereby most reproduce the eastward propagation of 
outgoing long-​wave radiation anomalies. Some models, 
however, have difficulty in simulating the propagation 
of the MJO across the Maritime Continent (eastward of  
120° E), the so-​called Maritime Continent ‘barrier’78. 
MJO-related Rossby wave propagation into the extratro
pics also provides predictability for extreme events such 
as storm tracks82, atmospheric rivers83 and tornadoes84.

S2S predictability is also influenced by the NAO (itself 
influenced by ENSO85), sea ice and the stratosphere86, 
which has a bearing on extremes in large regions of 
Europe and North America. Using the NCEP Climate 
Forecast System version 2 (CFSv2) and the Met Office 
Global Seasonal forecast System 5 (GloSea5), it has been 
suggested that the NAO exhibits predictability to at least 
several months ahead35,87,88. Indeed, all SubX models 

demonstrate significant NAO skill at week 3, specifically 
an ACC of ~0.27–0.5 (ref.6).

Similarly, the SAM is a source of predictability and  
prediction skill of rainfall, temperature and heat extre
mes over Australia89,90. Although SAM predictability is 
typically low beyond ~2 weeks, there is the potential to 
make seasonal predictions91 because of its association 
with ENSO92 and the influence of the stratosphere81,93.

Consideration of these modes offers ‘windows of 
opportunity’ in S2S prediction, where in certain situa-
tions there could be better predictability owing to active 
periods of the MJO or certain large-​scale atmospheric 
regimes, for example94.

Initial state. Given that the land surface varies more 
slowly than the atmosphere, it also provides a source of 
predictability for temperature and precipitation on S2S 
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timescales, the greatest contribution coming from soil 
moisture95. This predictability is most pronounced dur-
ing boreal spring and summer when synoptic systems 
have a smaller influence on soil moisture variability. 
The contribution of soil moisture anomalies to sub-
seasonal predictability also varies regionally, with the 
largest contribution in areas of strong land–atmosphere 
interactions96. As such, the land surface is initialized in 
most current operational subseasonal prediction systems 
and all research subseasonal systems (Supplementary 
Tables 1 and 2). In doing so, improved skill for S2S 
predictions of temperature and precipitation have 
been observed, although model errors impact the full  
realization of this skill95,97,98.

The coupling of the atmosphere to the ocean and sea 
ice is further thought to be important for predictability at 
lead times longer than 2 weeks, and, accordingly, ocean–
sea ice–atmosphere coupled models are routinely used 
in operational S2S initialized predictions. For Arctic sea 
ice, there is rising demand for reliable projections up 
to months ahead owing to increased human activities. 
Currently, the best subseasonal models show skilful fore-
casts of more than 1.5 months ahead99. Yet many current 
operational forecast models lack skill even on timescales 
of a week100. Hence, there is more work to be done to 
improve the S2S forecast skill of Arctic sea ice variables, 
although many systems are capable of predicting the sea 
ice extent at seasonal timescales, at least in some regions 
and seasons101–104.

Sea ice conditions (such as the location of the sea 
ice edge) can have significant feedback with the atmos-
phere and, thus, impact the forecast of the coupled 
system in initialized predictions105. For example, the 
largest mid-​latitude forecast skill improvements have 
occurred owing to improved Arctic predictions over 
eastern Europe, northern Asia and North America relat-
ing to sea ice reductions and anomalous anticyclonic  
circulation106.

The stratosphere. The largest recognized influence of the 
stratosphere on the troposphere comes from extreme 
states of the stratospheric polar vortex, particularly 
SSWs. SSWs are followed by tropospheric circulation 
anomalies that can last up to 60 days and resemble the 
negative phase of the NAO107,108. S2S forecasts initial-
ized near the onset of an SSW thus show increased skill 
for mid-​latitude to high-​latitude surface climate109, and 
seasonal predictability of the NAO is dependent on the 
presence of SSWs in ensemble predictions110. Although 
SSWs are not as common in the southern hemisphere, 
weakening and warming of the stratospheric polar 
vortex is predictable a season in advance and, through 
connections with a negative SAM, can offer some  
predictability of hot and dry extremes over Australia81,93.

The QBO can further influence the troposphere on 
S2S timescales. Specifically, phase changes in the QBO 
modify the strength of the stratospheric polar vortex111, 
in turn affecting the subtropical jet and storm tracks 
and, hence, surface climate112,113, and the strength of  
the MJO114,115. For example, the phase of the QBO in the 
initial state influences the prediction skill of the MJO, 
with higher skill during easterly QBO boreal winters 

compared with westerly QBO winters and improved skill 
for lead times of 1–10 days116. The prediction skill of the 
QBO itself is very high on the S2S timescales, with an 
ACC of 0.85–1.0 at a 1-​month timescale93.

S2I initialized predictions
S2I initialized predictions are relatively mature com-
pared with S2S and S2D, as evidenced by the number of 
national operational meteorological services that main-
tain state-​of-​the-​art initialized S2I prediction systems7,117. 
Primary sources and mechanisms of S2I predictability 
consist of slowly evolving boundary conditions of SST, 
land surface conditions (moisture, snow cover), sea ice 
variations118 and stratospheric state. Additional predict-
ability might be gained from the atmospheric compo-
sition, not typically represented in S2I models. Each of 
these factors are now discussed.

ENSO. The largest source of S2I predictability is asso-
ciated with ENSO. ENSO provides skill in predicting 
rainfall across the tropics119 and surface climate across 
the globe given their teleconnections120. This predicta-
bility skill is primarily derived from subsurface ocean 
processes121. Specifically, given that winds and SSTs  
in the deep tropical Pacific are largely in equilibrium, 
and the subsurface temperature or thermocline vari
ations are in disequilibrium, capturing the latter in the 
initial state of ESMs offers predictability121.

However, ENSO events exhibit a large diversity in 
spatial patterns, with the location of maximum SST 
anomalies ranging from the central Pacific to the far- 
eastern Pacific39,122. ENSO diversity raises predicta-
bility issues in terms of precursor mechanisms such 
as Pacific Meridional Modes123–127, forecast skill128,129, 
teleconnections130, multi-​year events131 and interpreta-
tion in the palaeo record132 — many of which remain 
unresolved.

Overall, current state-​of-​the-​art prediction systems 
are able to predict SSTs in the eastern Pacific up to 
6–9 months in advance with modest skill, especially for 
forecasts initialized in June and verified in the follow-
ing boreal winter. Yet current prediction systems con-
sistently struggle to predict through the boreal spring 
season, that is, the so-​called spring prediction barrier. 
The rapid onset or initiation of canonical, eastern Pacific 
ENSO events also remains a challenge to predict, largely 
because onset often requires stochastic triggers such as 
westerly wind bursts133,134. Indeed, inclusion of westerly 
wind bursts (or other triggers) as stochastic parameter-
izations has been found to improve model simulations 
of ENSO135 and forecast skill136. Prediction of different 
ENSO types appears to be limited to about 1 month137 
and, owing to the models’ systematic tendency to pro-
duce more warming in the east, strong eastern Pacific 
events are generally better predicted (that is, exhibit  
better forecast skill) than central Pacific events7.

Other modes of variability. Tropical Atlantic SST anom-
alies are also predictable on S2I timescales. SST ano
maly variability in this region is broadly categorized 
into two spatial patterns. The first is often referred to 
as the ‘Atlantic Niño’ and involves many of the feedback 
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mechanisms noted for ENSO138, but is shorter lived and 
weaker. In comparison with ENSO, however, the Atlantic 
Niño is less studied and also less predictable139,140. The 
second pattern of variability is referred to as the Atlantic 
Meridional Mode87. It is estimated that the Atlantic 
Meridional Mode is predictable one to two seasons in 
advance, with the mechanisms for predictability largely 
stemming from near-​surface air–sea interactions 
(thermocline variability is of secondary importance). 
However, even with some indications of successful 
predictions in certain circumstances including interac-
tions with the tropical Pacific138, as with all timescales 
of initialized predictions, persistent regional systematic 
errors with current initialized Earth prediction systems 
continue to be a factor in limiting the predictive abilities 
of tropical Atlantic S2I variability141,142.

Much like the Atlantic, Indian Ocean SST anomaly 
variability is weaker and may be less predictable than 
the Pacific, but is important for regional teleconnections 
and impacts. Indian Ocean SST variability has three dis-
tinct patterns of interest: the IOD, which can be trig-
gered by ENSO but can also emerge independently58,143; 
a basin-​wide pattern that is an ENSO teleconnection144; 
and a meridional mode pattern that depends on 
near-​surface air–sea interactions similar to that in the 
Atlantic145. Earth System prediction models typically 
struggle to predict the connection between ENSO and 
the IOD, the northward propagation of the merid-
ional mode and the persistence of the IOD, except in 
large-​amplitude cases146. The IOD also can affect pro-
cesses on the S2S timescale147, including the MJO, and 
even the extratropics. There are also other possible 
sources of S2I predictive skill involving the NAO148 and 
the Atlantic Ocean state that appear to drive aspects of 
summer European rainfall149.

Land surface processes. Slowly varying S2I soil moisture 
anomalies influence the prediction skill for precipitation 
and temperature150. Currently, the memory resulting 
from large soil moisture anomalies in the initial con-
ditions is believed to last ~2–3 months151, but there are 
case by case examples where predictability can be con-
siderably longer under conditions where soil moisture 
anomalies persist for more than one season, particularly 
for surface temperature. Indeed, some seasonal tempera-
ture predictability has been confirmed to arise from soil 
moisture, but the realization of skill is severely hampered 
by model biases152,153. Thus, reducing model error in the 
land surface components could considerably improve 
forecast skill, as seen in a large sample of initialized Earth 
System prediction experiments17.

The stratosphere. Improved surface prediction resulting 
from stratosphere-​related processes has been demon-
strated on the seasonal timescale: having a higher vertical 
resolution in the stratosphere in a GCM captures SSWs 
earlier compared with the standard model configur
ation and has a positive influence on the simulations of 
European surface climate154. Southern hemisphere SSWs 
also affect predictions of Australian extremes81,93. The 
QBO, discussed earlier with respect to S2S predictability, 
has also been shown to lead to enhanced predictability 

on seasonal timescales155,156, is predictable up to several 
years ahead157 and can also involve the MJO116.

Other sources of predictive skill. There are additional 
sources and mechanisms for S2I predictability that 
are not particularly well modelled in S2I prediction. 
For example, slowly evolving greenhouse gases such as 
carbon dioxide and methane are known to be a source 
of forecast skill owing to their role as external forcing 
agents158. However, an approximate time history of 
carbon dioxide, methane and chlorofluorocarbons is 
typically specified and not predicted, thus limiting the 
potential to capture S2I variability or regional effects. 
Moreover, dust and aerosol concentrations are known to 
affect human health, but these changes in atmospheric 
composition are usually not included in prediction 
systems.

S2D initialized predictions
There is a high level of interest in, and expectations 
of, initialized Earth System predictions on timescales 
beyond S2S and S2I. For example, even with their lim-
itations, there is evidence of skill in predicting surface 
temperature over and above that of simple persistence 
(Fig. 6a,b), and also precipitation and sea level pressure 
when using large multi-​model ensembles, albeit with less 
skill36. These skilful multi-​year predictions of precipita-
tion over land indicate potential benefit to communi-
ties, as demonstrated with summer drought indicators 
in major European agricultural regions being predicta-
ble on multi-​year timescales159. Here, we review the evi-
dence for processes and mechanisms acting on the S2D 
timescale that could contribute to the skill of initialized 
predictions12,36.

Modes of decadal SST variability. Processes and mecha
nisms have been identified that could provide skill for 
fundamental quantities such as SST in initialized pre
dictions. Attention has been focused on AMV160, but 
predictions of PDV160,161 — which are often described 
in terms of the Interdecadal Pacific Oscillation (IPO)162  
over the Pacific basin and the Pacific Decadal Oscilla
tion163,164 over the north Pacific — are also of interest. 
Other modes of variability associated with decadal 
timescales include the Meridional Modes165 and the 
North Pacific Gyre Oscillation166.

Basin-​wide warming and cooling patterns of SSTs 
and upper ocean heat content (averaged temperature for 
0–400 m) have also been shown to characterize decadal 
timescale variability in the Indian Ocean167–169, as have 
decadal variations of the IOD56,170. Decadal variability  
in the Indian Ocean could influence warming events 
near the Australian west coast171,172. Furthermore, a rapid  
rise in Indian Ocean subsurface heat content in the 
2000s in observations and model simulations is asso-
ciated with a redistribution of heat from the Pacific to 
the Indian Ocean and has been suggested to account 
for a large portion of the global ocean heat gain dur-
ing that period173,174. IPO variability could thus be 
affecting Indian Ocean variability, transmitted through 
both the atmospheric and oceanic bridges175. These 
low-​frequency connections have been implicated in 
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modulating interannual variability associated with the 
IOD on decadal timescales172,176.

One issue that remains to be resolved for S2D related 
to prediction skill is whether there are well-​defined 
timescales of variability that are distinct from the back-
ground of climatic noise; that is, whether there are modes 
of large-​scale variability that might display a statistically 
significant spectral peak in the decadal to multi-​decadal 
range and that could be predicted. Such signals could 
offer the best prospect for long-​term predictability, but 
on this timescale there is more of a broadband spectral 
peak. For example, CMIP5 control simulations showed 
patterns and multi-​decadal timescales of variability in 
the Pacific associated with the IPO that resemble obser-
vations but with lower amplitude177. Moreover, analysis 
of three generations of climate models (CMIP3, CMIP5 
and CMIP6) shows progressive improvement of climate 
models’ simulations of PDV178. However, there was no 
convincing evidence across these state-​of-​the-​art coupled 
models for distinct oscillatory signals, other than on the 

interannual (years 3–7) ENSO timescales179. These obser-
vations suggest, as noted previously, that low frequency 
variability on interdecadal timescales is characterized by 
broadband rather than oscillatory behaviour.

Global temperatures. The idealized ‘rising staircase’ 
(Fig. 6c) of global mean surface temperature (GMST) 
trends represents actual epochs of larger or smaller 
amplitude-​positive GMST trends (Fig. 6d) in a world 
with steadily increasing positive radiative forcing from 
increasing greenhouse gases180. This increase in radiative 
forcing means that the entire Earth System warms con-
tinuously, but the manifestation of that warming at the 
Earth’s surface on decadal timescales depends on how 
heat is redistributed in the climate system: if more heat 
remains near the ocean surface, the GMST rate of warm-
ing will be larger, but if more heat is distributed into the 
deeper ocean, then the GMST trend will be reduced44,181.

It is recognized that the slowdown in the rate of GMST 
warming in the early 2000s was likely a combination  
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of internal variability from the negative phase of the 
IPO182–186 and/or variations in the strength of the Atlantic 
meridional overturning circulation187, both of which 
acted to redistribute heat into the subsurface ocean. 
However, there is disagreement on whether the heat is 
primarily stored in the tropics174 or at high latitudes181. 
External forcing from a collection of moderate-​sized 
volcanic eruptions188 and from anthropogenic aerosols189 
might have also played a role in the slowdown, although 
their contribution is not entirely settled190.

Initialized predictions have been shown to success-
fully predict the onset of the GMST warming slowdown, 
linked to increased ocean heat uptake in the tropical 
Pacific and Atlantic Oceans183,191. Spatial patterns of 
predicted 20-​year surface air temperature trends have 
been shown to depend on the initial state of the Pacific 
Ocean192, with initialized model predictions exhib-
iting a large spread in projected multi-​decadal global 
warming unless the initial state of the Pacific Ocean is 
known and well represented in the model. Apart from 
its connection to the recent global warming slowdown, 
the negative phase of the IPO has also been linked to 
regional climate changes at higher latitudes, including 
the rate of Arctic sea ice decrease in the early 2000s 
(ref.193) and Antarctic sea ice expansion during that same 
period194,195.

Statistical methods47 and initialized predictions70,196 
foretold a transition of the IPO in the tropical Pacific 
from negative to positive in the 2014–2015 time frame, 
with a resumption of more rapid rates of global warming 
thereafter. There is observational evidence that this IPO 
transition also contributed to initiating rapid Antarctic 
sea ice retreat197.

There is a chronic shortage of observed data in the 
ocean to document heat redistribution. In models, this 
redistribution has been shown to involve the subtropical 
cells in the Pacific, Antarctic Bottom Water formation 
and the AMOC in the Atlantic2,44, as well as changes in 
the zonal slope of the equatorial thermocline182,198 associ-
ated with changes in tropical winds. However, decipher-
ing decadal timescale variability in the observed climate 
system, and interpreting such variability in the context of  
initialized predictions, is complicated by the presence  
of external forcings (such as anthropogenic and volcanic 
aerosols and solar forcing) that can produce decadal 
variability in the Pacific189 or Atlantic199,200 with similar 
patterns to presumptive internally generated decadal 
climate variability180,201,202.

Interactions between ocean basins. Interactions between 
various ocean basins are one of the most compelling sci-
ence questions that have arisen regarding the origins and 
nature of decadal climate variability, with implications 
for initialized prediction skill160,203,204. For instance, if a 
skilful prediction of climate in one basin is achieved, 
then skilful simulations in the other basins could follow 
(if the models capture these connections realistically), 
thus improving the skill of initialized S2D predictions.

SST variability in one ocean basin can affect the others  
through the tropical large-​scale east–west atmospheric 
Walker Circulation, although the direction of those 
influences differs204,205. For example, model simulations 

have indicated that decadal timescale variability in 
the Atlantic could produce decadal timescale vari-
ability in the Pacific61,206–208. PDV can also affect the 
Atlantic194,209,210 and control a large fraction of decadal 
variability in the Indian Ocean58,172,211–213. Similarly,  
the Indian Ocean could influence decadal variability 
in the Pacific168,203,214. There also could be staggered 
responses based on decadal timescales, with the tropical 
Pacific driving the tropical Atlantic on interannual time
scales, with the Atlantic then affecting the Indian Ocean 
and, subsequently, the Pacific on decadal timescales215,216. 
It has further been postulated that the tropical Atlantic 
and Pacific Oceans are mutually interactive on deca
dal timescales, with each alternately affecting the  
other205, and that the tropical Pacific could be driving  
the extratropical Pacific217.

External forcing, particularly from time-​evolving 
anthropogenic aerosols, is another factor that could 
produce decadal climate variability and inter-​basin 
connections189,199,218. Such fundamental interactions 
all currently fall under the heading of a compelling 
research frontier that, with increased understanding, will  
certainly advance the science of initialized prediction.

Summary and future perspectives
Numerical models initialized with observations for spe-
cific time periods and integrated forward in time provide 
a continuum of predictions on different timescales from 
S2S to S2I and S2D. Results so far demonstrate initialized 
prediction skill for variables such as surface tempera-
ture and key modes of atmospheric and ocean variabil-
ity. Such skill has been demonstrated, for example, for 
the MJO on S2S timescales, for ENSO on S2I timescales 
and for surface temperatures in most ocean regions on 
S2D timescales. Yet, despite progress in predictions and 
processes, there are still many challenges and priorities 
for future research.

Model error. Almost every science-​related aspect of 
subseasonal to decadal climate variability has consid-
erable uncertainty associated with it. Therefore, apart 
from fundamental scientific understanding, perhaps 
the key obstacle to progress is model error, particularly 
with regards to biases and drifts. Progress thus requires 
model improvement, developments of which are dif-
ficult but not impossible. In recent years, for instance, 
model development work has been undertaken in the 
coupled space, improving simulation of atmosphere–
ocean phenomena that give rise to predictability (such 
as the MJO and ENSO), and therefore minimizing the 
exacerbation of drift when developed in isolation. Model 
improvements depend critically on our understanding 
of processes and mechanisms and how they work in 
the climate system, as it is difficult to model what is not 
understood. Therefore, enhanced observational and 
analysis projects must continue to provide the know
ledge base from which to make improvements to the 
model simulations.

Model error remains a significant obstacle against 
which future progress will be measured, with pro-
found implications for possible applications to stake-
holder communities. Such applications could include 
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energy supply (wind, solar) and demand219, agriculture 
(drought, freezing), transport220 and numerous others 
spanning a range of timescales. Notably, S2S predic-
tion could inform preparedness for specific large-​scale 
extreme events weeks ahead5, and S2I and S2D initial-
ized predictions are beginning to inform planning at 
ranges between the seasonal and multi-​decadal climate 
change timescales221.

In addition to coupled model development, increased 
model resolution has also shown the ability to improve 
model bias and the signal to noise ratio. Consequently, 
the benefit of increased model resolution is one of the 
research frontiers of initialized prediction. However, such 
increased resolution must also be accompanied by com-
parable increases in the quality of the physical param-
eterizations such as cloud feedback and cloud–aerosol 
interactions. Although we are still very likely decades 
away from having global coupled models (and suitable 
machines) capable of explicitly resolving processes that 
would improve model bias (such as atmospheric convec-
tion and ocean eddies), approaches have been developed 
to reduce computational cost and bias. These approaches 
include flux correction techniques222, parameter estima-
tion223, reducing the precision of some variables224 and 
stochastic modelling225. Additionally, machine learn-
ing techniques are providing indications of improving 
predictive skill. For example, a deep-​learning approach 
using a statistical forecast model has been shown to 
produce skilful ENSO forecasts for lead times of up  
to 1.5 years226. Utilization of GPU-​based computer archi-
tectures could become useful and open the way to better 
parametrizations that depend on intensive calculations  
that can be addressed with GPU architectures.

Initialization. Integrating the vast amount of observed 
information into an ESM is central to the S2D predic-
tion. Traditionally, the most advanced data assimilation 
techniques were implemented in the atmospheric com-
ponent. In the last decade, however, there has been grow-
ing interest in how to fully utilize relevant satellite and 
in situ observations to improve S2S and S2I predictions. 
Coupled ocean–atmosphere data assimilation28,227,228 
shows promising evidence that coupling can reduce 
‘initialization shock’ and improve forecast performance 
on timescales of weeks to decades229. The advancement 
has led to coupled reanalysis products for both the ocean 
and the atmosphere (CFSR by NCEP230 and CERA by 
ECMWF231) and is expected to substantially improve S2S 
and S2I predictions.

Compared with S2S and S2I predictions, there remain 
critical obstacles to how to initialize decadal predictions. 
First, there is a lack of observations. S2D models need to 
be initialized in the 1960s and 1970s in order to calibrate 
the decadal prediction systems and achieve the potential 
to capture the evolution of low-​frequency modes of var-
iability (such as PDV and AMV). Reconstruction of the 
global ocean subsurface temperature and salinity prior 
to the advent of Argo floats remains a large problem. 
Currently, most modelling centres performing decadal 
predictions do not carry out their own assimilation exer-
cise; rather, they simply nudge some reanalysis products 
in the ocean and atmosphere (Supplementary Table 3). 

How to best initialize the ocean without reliable sub-
surface observations, and how the inhomogeneity of the 
observations can impact model performance, have not 
been carefully investigated.

Building ensembles is another key obstacle to decadal 
prediction, as common practice in the community is to 
use an ensemble of ten members following the CMIP5 
and CMIP6 experimental designs. A large ensemble 
consisting of 40 members can provide better opportu-
nities for skilful predictions of low-​frequency climate 
variability over land in selected regions20. However, 
compared with the atmosphere, there is very limited 
understanding of the mechanisms and uncertainty asso-
ciated with the low-​frequency internal variability in the 
ocean owing to the lack of long-​term observations of 
the subsurface ocean, and thus lack of guidance as to 
how to build the ensemble. Machine learning methods 
could help address this problem, although the lack of 
long-​term subsurface ocean observations will always be 
a factor for the S2D timescale. Finally, a major constraint 
is computational capability, both for initialization and 
for running adequate numbers of ensembles to improve 
skill33. The future of initialized prediction will depend 
on computational resources balanced with factors 
involving increased resolution, machine learning, use 
of new high-​performance computing architectures and  
developments in exascale computing.

Predictability of internal variability. There are con-
siderable future challenges for understanding internal 
variability in the context of initialized prediction. These 
include the need to have a better understanding and bet-
ter estimates of predictability. Additionally, research is 
needed regarding why models appear to underestimate 
the magnitude of predictable signals compared with 
unpredictable variability, and this involves the response 
to external forcing as well232.

One issue that remains to be resolved for S2D ini-
tialized predictions is whether there are well-​defined 
processes and mechanisms that, if initialized properly, 
could provide predictable signals distinct from the 
background of climatic noise. Signals from PDV and 
AMV offer the best prospect for long-​term predictabi
lity. Strong low-​frequency variability in palaeoclimate 
‘proxy’ records, which is not captured by most climate 
models, suggests either that models do indeed underes-
timate low-​frequency modes of variability or that proxy 
observations contain significant residual non-​climatic 
sources of variation, or some combination thereof 233–236. 
Even if there is no distinct low-​frequency (oscillating) 
phenomenon, predictability on decadal timescales could 
also come from memory and slowly varying components 
of the Earth System, such as the slow propagation of oce-
anic planetary waves237,238 or natural volcanic forcing47, 
and initialization could be expected to contribute to skill 
in such cases.

Expanding predicted variables. There is interest in, and 
corresponding applications for, expanding beyond the 
prediction of surface temperature, precipitation and 
SST. Predictions of the frequency of extreme events such  
as tropical storms and hurricanes have great potential as 
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climate services. There have been efforts at predicting 
soil moisture with implications for drought prediction239 
and ecosystem respiration240, as well as snowpack with 
ramifications for water resources241,242 and marine 
heatwaves243. There is also a great societal need for pre-
diction of sea ice on S2I and S2D timescales. Some S2I 
models show some skill in predicting the sea ice edge 
in the Arctic244, whereas S2S models show a very wide 
range of skill in predicting the sea ice edge in the Arctic, 
with the most skilful models producing useful forecasts 
up to 45 days99. Although the potential for skilful ini-
tialized predictions of Arctic sea ice on S2S timescales 
has improved in the last decade, there is still a lot more 
to be explored and improved101. We still need to under-
stand what are the key processes driving subseasonal 
variations of sea ice and to improve the representation 
of these processes in the S2S models. Improved coupled 
data assimilation of the ocean, sea ice and atmospheric 
coupled system can help improve initial conditions  
for coupled forecasts and, concomitantly, the forecast 
skill of features that are sensitive to the initial state14,245,246.

Other important aspects of the cryosphere relevant to 
initialized prediction on S2D timescales are ice sheets. As 
new interactive ice sheet simulations and spin-​up pro-
cedures come increasingly online247, this will provide an 
additional opportunity for initialized S2D predictions.

Air pollution and air quality are other very society- 
relevant applications that have been largely unexplored 
owing to the lack of inclusion of interactive tropospheric 
chemistry in most S2S, S2I and S2D models. However, 
new comprehensive ESMs, such as the Community 
Earth System Model with the Whole Atmosphere 
Community Climate Model as its atmospheric compo-
nent (CESM2-​WACCM248), will be able to explore this 
research area.

In the broader Earth System, there is growing inter-
est in predicting the biosphere and biogeochemical state 
variables and fluxes that could inform management 
decisions. Skilful initialized predictions of SST on S2S 
timescales can engender predictability of fish yields in 
the California Current System249 and other large marine 
ecosystems250. S2S initialized predictions of heat stress 
and coral bleaching risk have also demonstrated consid-
erable skill and have provided critical advanced warning 
for coral reef scientists, managers and stakeholders251. 
SST anomalies in the western tropical Pacific and north-
ern subtropics, often associated with ENSO events, 
appear to be skilful precursors for variations in tem-
perature and related biological productivity along the  
US West Coast on S2I timescales252.

Emerging literature on S2D predictions of biogeo-
chemistry in the terrestrial biosphere and ocean sug-
gests that slowly evolving state variables could enable 
prediction of biogeochemically relevant quantities with 

greater skill than physical state variables such as tem-
perature and precipitation. For example, predictions 
of marine net primary production by photosynthesiz-
ing phytoplankton (including algae, eukaryotes and 
cyanobacteria) might foretell future potential fisheries 
catches, predict harmful algal blooms253 and aid with 
fisheries management strategies253–256, as would skilful 
predictions of ocean oxygen content or acidity257,258. 
Reliable forecasts of the changing global carbon budget, 
including the rate of ocean carbon absorption216,259–261 
or the rate of terrestrial biosphere–atmosphere net eco-
system exchange240,259, could help to generate forecasts 
of atmospheric CO2 growth rate and contribute to CO2 
emission management strategies. Additionally, there has 
been demonstrated S2I skill at predicting net primary  
production related to fire risk262.

Recently reported skilful predictions of chlorophyll 
concentrations over the global oceans at seasonal to 
multi-​annual timescales have been related to the suc-
cessful simulation of the chlorophyll response to ENSO, 
and to the winter re-​emergence of subsurface nutrient 
anomalies in the extratropics255. Chlorophyll not only 
responds to ENSO, but can also constitute a potentially 
useful ENSO precursor263.

In the ocean biogeochemical system, variables of 
interest for prediction are rarely directly observed at the 
spatial and temporal scales needed for forecast verifica-
tion, regardless of the timescale of the prediction264,265. 
Thus, most of the literature is focused on the potential to 
make predictions of these quantities, rather than on skill 
as measured by historical observations254,256,259,260, with 
exceptions216,257,258. On the global scale, verification is lim-
ited to variables measured or derived from satellite obser-
vations, such as ocean chlorophyll255, marine primary 
productivity20 or interpolated estimates of the surface 
ocean partial pressure of CO2 (ref.261). Nevertheless, there 
is promising potential to make ocean biogeochemical  
initialized predictions across multiple timescales.

For S2S, S2I and S2D initialized predictions to be 
useful, they must be shown to be not only skilful but 
reliable266, and this is a considerable challenge that the 
community is only starting to attempt to address5,21.  
The ultimate challenge in this emerging area of research, 
and one that is igniting excitement and interest in the 
scientific community, is to provide predictions with 
maximum skill that take into account all relevant pro-
cesses across subseasonal to decadal timescales267–269. 
Towards that end, initialized prediction is already put 
to task and being applied in various sectors even as 
improvements in understanding and prediction capa-
bility are being improved, thus driving rapid advances 
in this burgeoning field.
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