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ABSTRACT

This study uses an empirical downscaling method based on self-organizing maps (SOMs) to produce high-

resolution, downscaled precipitation projections over the state of Pennsylvania in the mid-Atlantic region of

the United States for the future period 2046–65. To examine the sensitivity of precipitation change to the

water vapor increase brought by global warming, the authors test the following two approaches to down-

scaling: one uses the specific humidity in the downscaling algorithm and the other does not. Application of the

downscaling procedure to the general circulation model (GCM) projections reveals changes in the relative

occupancy, but not the fundamental nature, of the simulated synoptic circulation states. Both downscaling

approaches predict increases in annual and winter precipitation, consistent in sign with the ‘‘raw’’ output from

the GCMs but considerably smaller in magnitude. For summer precipitation, larger discrepancies are seen

between raw and downscaled GCM projections, with a substantial dependence on the downscaling version

used (downscaled precipitation changes employing specific humidity are smaller than those without it).

Application of downscaling generally reduces the inter-GCM uncertainties, suggesting that some of the

spread among models in the raw projected precipitation may result from differences in precipitation pa-

rameterization schemes rather than fundamentally different climate responses. Projected changes in the

North Atlantic Oscillation (NAO) are found to be significantly related to changes in winter precipitation in

the downscaled results, but not for the raw GCM results, suggesting that the downscaling more effectively

captures the influence of climate dynamics on projected changes in winter precipitation.

1. Introduction

Warming over the next century associated with an-

thropogenic increases in greenhouse gas concentrations

is likely to be especially large over North America

(Meehl et al. 2007). State-of-the-art general circulation

models (GCMs) project that annual mean precipitation

over North America is likely to increase in association
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with the consequent enhancement of atmospheric mois-

ture (Christensen et al. 2007).

Although GCMs are the major tools used for future

climate projections because of their well-established

physical basis and ability to reproduce observed features

of recent climate, particularly at continental and larger

scales (Randall et al. 2007), GCMs cannot adequately

resolve many important processes needed to capture

regional climate changes, such as convective and to-

pographically forced precipitation. Yet capturing such

details is crucial for climate change impact studies at

decision-making scales (Barron 2009) and for the esti-

mation of relevant hydrologic variables such as stream-

flow or soil moisture (Wagener et al. 2010). To bridge the

gap between the GCMs and regional climate change, two

types of downscaling methods have been developed and

widely applied (Houghton et al. 2001; Christensen et al.

2007). One such approach, dynamical downscaling, uses

regional climate model (RCM) simulations (Chen et al.

2003; Plummer et al. 2006), while the alternative approach

involves so-called statistical or empirical downscaling.

In this paper we describe an application of empirical

downscaling of daily precipitation over multiple loca-

tions in Pennsylvania (United States). The objective is to

estimate future projections that can be used to drive

hydrological and ecological models while employing

a new approach to ensemble averaging, and to explore

the uncertainty of these projections. Uncertainty exists

in GCM projections of future climate largely because of

the uncertainty in the projected anthropogenic forcing

itself (i.e., the emissions scenario considered or ‘‘sce-

nario uncertainty’’), intermodel differences in the phys-

ical parameterization of subgrid-scale processes, and

because of random variability and the dependence on

initial conditions (see, for example, Maraun et al. 2010).

Similar sources of uncertainty are found to dominate

RCM projections (e.g., Rowell 2005; Rowell and Jones

2006). Frei et al. (2003) also conclude that deficiencies in

the parameterizations for convection, the soil physics

and land surface parameters, and the surface radiation

balance are possible RCM error sources on simulations

of daily precipitation statistics over European Alps. The

sensitivity of projected midtwenty-first-century climate

changes is relatively insensitive to the scenario uncer-

tainty (Fig. 10.4, Meehl et al. 2007); the spread in the

projected global surface temperature increase through

2050 is only about 18C. It is thus reasonable to select, as

in this study, one representative scenario and focus in-

stead on the physical uncertainties in projected future

climate change.

Much of these physical uncertainties arise from the

characteristically low resolution and varying physical

parameterizations of subgrid-scale processes (radiative

transfer, cloud formation, convection, etc.) in the dif-

ferent GCMs analyzed (Meehl et al. 2007; Christensen

et al. 2007). Downscaling can potentially circumvent, at

least partly, the influence of such limitations on pro-

jections of daily precipitation. One caveat is that impacts

from factors such as future land cover changes and the

distribution of aerosols complicate efforts to downscale

projected climate change to regional scales. Empirical

downscaling does not reduce these additional scenario

uncertainties (although, with dynamical downscaling it

is at least possible to examine the local sensitivity to

these parameters).

Benestad (2002b) uses a multimodel ensemble meth-

od to evaluate the results of empirical downscaling of

different global climate scenarios and different regions.

He finds that the ensemble spread provides a crude

measure of the uncertainties associated with different

scenarios and that different models show a reasonably

strong level of agreement for projected winter temper-

ature changes. Benestad (2004) also finds that a down-

scaling analysis of a multimodel ensemble can provide a

first estimate for a probabilistic climate forecast, despite

the large differences among climate scenarios and

among GCMs. Hewitson and Crane (2006) also show

that empirical downscaling can help to reduce the un-

certainty arising from different GCM parameterization

schemes. In this paper, we will present how the down-

scaling method can reduce the inter-GCM uncertainties

on future projected annual and seasonal precipitation

changes.

Moreover, to assess the performance of downscaling

methods in reducing uncertainty following the idea of

Benestad (2002a), we examine the changes of downscaled

precipitation and related synoptic circulation North Atlan-

tic Oscillation (NAO), which is the most prominent mode

of atmospheric variability in the Northern Hemisphere

winter climate (Wallace and Gutzler 1981; Barnston and

Livezey 1987) and a major source of seasonal to inter-

decadal climate variability on winter surface temperature,

storminess, and precipitation over the northern Atlantic

and European regions (Deser 2000; Thompson and Wallace

2001; Wanner et al. 2001; Trenberth et al. 2007; Miettinen

et al. 2011).

Because of the poleward expansion and weakening of

the Hadley Circulation and a poleward shift of the storm

tracks, sea level pressure (SLP) is projected to increase

over the subtropics and midlatitudes and decrease over

high latitudes as greenhouse gas concentrations increase

in most models (Yin 2005). Combined with other dy-

namical mechanisms related to the vertical structure of

atmospheric temperature changes resulting from ele-

vated greenhouse gas concentrations (e.g., Miller et al.

2006), these responses generally lead to projections of a
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positive trend in the NAO across models (Meehl et al.

2007).

Many studies have shown that the NAO has a strong

influence on regional temperature and precipitation

variability over Europe (Hurrell 1995; Rodó et al. 1997;

López-Moreno and Vicente-Serrano 2008). However,

there are only a few studies addressing the influence of

the NAO on precipitation patterns in North America,

especially the Northeast United States (Hurrell et al.

2003). In this paper, we investigate the relationship be-

tween winter precipitation over Pennsylvania and the

NAO and use model-projected changes in the NAO as

a means of classifying and understanding some of the

spread observed in the downscaled estimates of pro-

jected precipitation change.

2. Data and methodology

a. Data and downscaling procedure

The study area Pennsylvania locates at mid-Atlantic

region of the United States, and the locations of 17

stations used in this paper are shown in Fig. 1. The ob-

served precipitation data for the 17 stations are for the

period 1961 to 2005. The empirical downscaling scheme

used here is described briefly below and in detail in Ning

et al. (2012). The downscaling procedure employed here

uses self-organizing maps (SOMs) to define the char-

acteristic modes of the synoptic-scale atmospheric state

centered on each of the points (meteorological stations)

for which the downscaling takes place. SOMs are anal-

ogous to a fuzzy-clustering algorithm and are usually

used to visualize and characterize multivariate data

distributions (Kohonen 1989, 1995). A SOM is typically

depicted as a two-dimensional array of nodes, where

each node is described by a vector representing the av-

erage of the surrounding points in the original data

space. For an input dataset that is described by a matrix

of n variable data points and m observations, each node

in the SOM is described by a reference vector having

length n. The initial step in the SOM training involves

assigning random values to each node reference vector,

and then comparing the data record with each node

vector. The reference vector that most closely matches

the data vector is defined as the ‘‘winning’’ node. Then

the reference vector of the winning node is updated

slightly toward the direction of the input data by a factor

termed the ‘‘learning rate.’’ All the surrounding nodes

are also updated in the direction of the input data by a

smaller learning rate. The entire process is then re-

peated for multiple iterations until the differences be-

tween iterations are smaller than a selected threshold

value. This training procedure is described in detail in

Crane and Hewitson (2003). In the training step, all the

seven or eight variables (see descriptions below) from

the National Centers for Environmental Prediction

(NCEP) reanalysis data for period 1979–2007 are used

to generate the SOM.

Then for each station, we compare the observed daily

atmospheric data to the SOM nodes and map each day

to one particular node. For each SOM node, we take all

the days that map to that particular node and then rank

the precipitation on those days from low to high. A

spline is fit to the ranked precipitation data to define a

continuous cumulative distribution function (CDF) of

the node’s rainfall. This procedure is repeated for all the

nodes in the SOM and then for all stations. In the down-

scaling procedure, each day’s atmospheric state from

present or future simulations of the GCMs is mapped to

a node on the SOM, and a precipitation value is selected

from the CDF of that node through the random number

generator.

For a more detailed discussion of the downscaling

procedure, and results for historical [twentieth-century

climate in coupled models (20c3m) Coupled Climate In-

tercomparison Project phase 3 (CMIP3) multimodel]

simulations, the reader is referred to our previous work

(Ning et al. 2012). During the historical period, our

downscaling approach was shown to reproduce the major

characteristics of the observed precipitation with smaller

biases than the raw GCM-simulated precipitation. Here

we apply the downscaling procedure to the 2046–2065

simulations using the A2 emissions scenario for the same

nine GCMs of the CMIP3 multimodel ensemble that were

used for the historical period (‘20c3m’) analysis in Ning

et al. (2012): Canadian Centre for Climate Modelling and

Analysis (CCCma) Coupled General Circulation Model,

version 3.1 (CGCM3.1), Centre National de Recherches

FIG. 1. Map of Pennsylvania and the surrounding region, in-

dicating the locations of the 17 stations used in the study. The

names of the stations are listed in Table 2.
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Météorologiques Coupled Global Climate Model, version

3 (CNRM-CM3), Commonwealth Scientific and Industrial

Research Organisation Mark version 3.0 (CSIRO Mk3.0),

Geophysical Fluid Dynamics Laboratory Climate Model

version 2.0 (GFDL CM2.0), Goddard Institute for Space

Studies Model E-R (GISS-ER), L’Institut Pierre-Simon

Laplace Coupled Model, version 4 (IPSL CM4), Meteo-

rological Institute of the University of Bonn, ECHO-G

Model (MIUBECHOG), Max Planck Institute (MPI)

ECHAM5, and Meteorological Research Institute Cou-

pled General Circulation Model, version 2.3.2a (MRI

CGCM2.3.2a). To assess the sensitivity of future precipi-

tation projections to the way in which changes in atmo-

spheric humidity are represented, we try two downscaling

approaches in this paper. The first approach uses seven

variables: u and v components of the wind at 10 m and

700 hPa, relative humidity at 850 hPa, air temperature

anomaly at 10 m, and the lapse rate of temperature from

850 to 500 hPa. In the second approach, the specific

humidity at 850 hPa is added as an eighth variable to cap-

ture the water vapor increase brought by global warming.

Comparisons with an ensemble of RCM simulations

over South Africa suggested that in some locations the

use of specific humidity overestimated future rainfall

change (B. C. Hewitson 2009, personal communication).

The rationale for including specific humidity is that in-

creasing temperatures in the future could increase the

potential for rain without changing relative humidity.

Under present-day conditions, downscaling over Penn-

sylvania with and without specific humidity gives es-

sentially the same result (Ning et al. 2012). Downscaling

future climate projections, however, shows a significant

difference. A range of input variables were tested prior

to selecting the seven variables described in the original

derivation of the methodology applied to South Africa

by Hewitson and Crane (2006). In this paper, therefore,

we do not examine the uncertainty that results from

including or excluding all combinations of input vari-

ables, but we do examine the differences that arise from

including specific humidity as an additional humidity

parameter.

b. Ensemble averaging through skill-based weighting

In this paper, we employ a new weighting method for

constructing multimodel ensemble weighted-average

monthly precipitation amounts from the individual

downscaled model estimates, modified from a procedure

introduced by S. Carter (2007, personal communication)

for South Africa. Calculating a weighted average based

on the skill with which each GCM is able to recreate

historical conditions is one option for producing a single

time series from an envelope of ensemble projections

(Brekke et al. 2008). The assumption is that models that

do well under the present climate will also do well in the

future. In this paper we introduce a modification of the

weighted average, accepting that with no better infor-

mation to go on, the models that have higher skill in the

present should be given greater weight in the future.

However, we also consider that the relative skill ex-

hibited by a particular model is not likely to be the same

under all conditions, such as the large-scale atmospheric

flow responsible for frontal rainfall and small-scale

convection. The averaging method described here takes

such variability into account.

The proposed method works as follows. During the

downscaling procedure, each day’s simulated atmo-

spheric state is mapped to one of the characteristic

synoptic states defined by the nodes in the SOM. As

noted above, the SOM can be considered analogous to a

nonlinear fuzzy clustering algorithm, where each node

in the SOM describes a cluster of points in the original

multidimensional data space. For each node (or cluster)

there is a corresponding quantization error defined by

the distribution of points (days) that form the cluster.

The quantization error is the sum of the absolute dif-

ferences of each day from the group mean (analogous to

the within group variance in cluster analysis). Larger

quantization errors indicate greater variability between

the days mapped to a particular node. The advantage of

this approach is that it gives greater weight to those

GCMs with simulations closer to the characteristic

synoptic circulation and the weighting for each model

changes each day as the atmospheric state changes. This

approach can generate a closer ensemble average to the

observation than the simply averaging method for the

historical period.

To produce an ensemble weighted-average daily pre-

cipitation amount, we first calculate the total quantiza-

tion error from all GCMs for each day. We apply that

quantity as a normalized inverse weight for that day’s

downscaled daily precipitation amount for each GCM

and sum over the GCMs to obtain an ensemble averaged

daily precipitation amount. The weighted ensemble av-

erage precipitation, p, is given by

p 5 �
9

i51

pi

�
9

i51

ei

ei

�
9

i51

�
9

i51

ei

ei

0
BBBBBBBBB@

1
CCCCCCCCCA

, (1)

where pi is the downscaled daily precipitation for that

day from the ith GCM, and ei is the corresponding

quantization error for that day from that GCM.
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After generating the ensemble averages across all

nine GCMs, the inter-GCM uncertainty is defined as the

root-mean-squared deviation from the ensemble aver-

age for each precipitation metric. The same approach is

used to compute the weighted ensemble average for

both present and future conditions. The quantization

error for the future projection shows how closely the

simulation maps to the present atmospheric states, but

the weighting also takes into account how the frequency

of occurrence of those states changes in the future, thus

the weighting of each GCM may actually change be-

tween the present and the future as changes occur in the

simulation of the synoptic atmospheric conditions.

3. Results

a. Simulated future changes of the synoptic states

Figures 2a–i show the differences in frequency dis-

tributions of characteristic synoptic-scale atmospheric

states between the midtwenty-first-century (2046–2065)

and late twentieth-century modern control (1961–2000)

periods for the nine GCMs, for the Harrisburg station

(408N, 76.58W), located in central Pennsylvania. The

results shown correspond to the first of the two down-

scaling schemes (i.e., without specific humidity). Similar

results are obtained using the second ‘‘dual humidity’’

scheme wherein specific humidity is used as well as rel-

ative humidity. The 11 3 9 matrix represents the SOM,

where each cell in the matrix represents a characteristic

synoptic atmospheric state composing seven circulation

variables. The figure shows the percent difference in

how many days map to each atmospheric state in the

future compared to the present. Considering all days of

the year (i.e., all seasons simultaneously), we see that for

the majority of GCMs most of the substantial changes in

frequency are found in the interior nodes of the SOM.

When applying the averages plus/minus the standard

deviations as significant thresholds, only 20%–30% of

the nodes have significant changes for different GCMs.

This observation suggests that the climate for this region

is characterized by the same basic range of atmospher-

ic states. The projected changes in climate, then, are

largely represented through the shifts in the frequency

of existing synoptic atmospheric states, rather than

through the creation of new, nonanalog states. Down-

scaling based on the SOM derived from present-day

observations of the atmospheric state should thus be

broadly valid for the projection of future changes.

Large increases in frequency at the edges of the SOM,

if combined with large increases in the quantization er-

ror (Figs. 2j–r) on the same nodes might, on the other

hand, indicate problems with stationarity (i.e., the future

climate being so different to the present that it is trying

to map beyond the bounds of the SOM). The GCMs

simulated present and future daily synoptic circulation

state datasets should be considered as two data spaces.

When the future synoptic circulation state data are

mapped to the characteristic circulation patterns rep-

resenting the present synoptic circulation state data, if

the future synoptic circulation data are very different

from the present synoptic circulation data, the SOM will

have the tendency to map the days to the edges of the

SOM, which are the bound of the present data space.

Meanwhile, the quantization errors over the edges of the

SOM will also be much larger since the future data

spaces have much greater distances from the charac-

teristic patterns than the present data space. Our results,

however, show little evidence of such a problem and

only about 10%–30% of the changes significant, with

two notable exceptions: the IPSL and CSIRO Mk3.0

models. The IPSL model shows a reduction in quanti-

zation error across the whole SOM. This suggests that

while the IPSL simulation of future climate includes the

same range of atmospheric states, there is less variability

around those states than exists in the present-day simu-

lation. CSIRO Mk3.0, on the other hand, shows increased

quantization errors on some nodes, and much reduced

errors on others. This suggests that the future simulation

exhibits a reduced range of states, but with increased

variability around each state. Although it manifests itself

in different ways, both models are showing reduced var-

iability in atmospheric conditions in the future.

Figure 3 shows the differences in quantization errors

between the two periods averaged across all (99) SOM

nodes, with their corresponding standard deviations, for

each of the nine GCMs. With the notable exception of

CSIRO Mk3.0 and IPSL, the differences are indistin-

guishable from zero, reinforcing the conclusion that

circulation states in the future map similarly close to

their associated nodes for the present.

b. Projections of future precipitation (GCM versus
downscaled results)

1) CHANGES IN ANNUAL PRECIPITATION

Table 1 compares downscaled and raw simulated

changes from late twentieth to midtwenty-first century

in average monthly precipitation amounts and number

of rain days for each of the nine GCMs for the Har-

risburg station. Only daily precipitation totals that

meet the standard definition of a ‘‘rain day’’ (larger

than 0.25 mm, i.e., 0.01 inch—see Fitzpatrick and

Krishan 1967; Hershfield 1971; Gallus and Segal 2004)

are considered. Results are shown for the raw GCM

projections as well as for the two downscaling methods.
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FIG. 2. (a)–(i) The differences of frequency distributions (unit: % change) and (j)–(r)

quantization error differences (unit: 1) between the future (2046–65) and control (1961–

2000) climate simulations centered on (408N, 76.58W) for the nine GCMs.
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For the downscaled precipitation based on the first

method (relative humidity only), changes in monthly

average precipitation range from roughly 23 mm to

19 mm, with an ensemble average 12.7 mm. All GCMs

show small (less than 1 day) changes in the average

monthly rain day totals, with an average of 10.2 days,

considering both the observed and downscaled average

monthly numbers of rain days are about 11 days. Using

the second method (dual humidity variables), monthly

average precipitation increases are larger, ranging from

10.6 to 18.7 mm, with an ensemble average of 13.1 mm,

while the change in mean monthly rain day totals is

identical (average of 10.2 days over models). For the

raw model-simulated precipitation, increases are larger

than those for either downscaling approach, with an

ensemble averaged increase of 16.5 mm. The change in

rain day totals (61 day) remains small, though the

nominal number of rain days is already greatly over-

estimated (about 20 days per month) by the GCMs for

the modern day control—see Ning et al. (2012). Note

that the intermodel variability, defined as the standard

deviation, is much larger for the raw GCM changes than

for either of the two downscaling-based estimates.

There is no consistent pattern between the three sets

of results in Table 1 across models. For CCCMA, the

projected change in precipitation is essentially the same

for the raw GCM estimates and both downscaling esti-

mates. For CNRM, the downscaling with both humidity

values increases the projected rainfall change and moves

it closer to the raw GCM values. For CSIRO Mk3.0, on

the other hand, using both humidity parameters re-

duces the projected increase and reduces agreement

between the downscaling and raw model values. How-

ever, for six out of the nine models, using both humidity

parameters enhances the precipitation increase in the

future since including specific humidity will take the

future water vapor increase into account and tend to

increase the precipitation probability in the downscaling

procedure. For two models, the changes switch from

negative to positive, and only in one case does it reduce

the future change. Overall, the standard deviation of

future projections is much greater for the raw GCM

values than it is for either of the downscaling results.

2) SPATIAL VARIATION

Figures 4a–f show the spatial distribution of changes in

precipitation and rain days for the ensemble average across

the nine GCMs over all months. The corresponding per-

centages and GCM consensus of precipitation changes are

shown in Fig. S1 (http://dx.doi.org/10.1175/JCLI-D-11-

00565.s1.). For the downscaling without specific humidity

(Fig. 4a), decreases are found over northwest Pennsylva-

nia, while increases are found over southeast Pennsylvania.

This pattern of gradual increase from northwest to south-

east also exists in the downscaled changes with dual

FIG. 3. The values of quantization error differences averaged across all 99 nodes (squares) and

standard deviations (whiskers) for the nine GCMs (unit: 1).
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humidity variables (Fig. 4c), but the changes in that

case are all positive and larger than those changes in the

downscaled results without specific humidity. One pos-

sible explanation for this spatial pattern is suggested by

Rowell and Jones (2006), who found that the large land–

sea contrast in lower-tropospheric warming will lead to

reduced humidity in air advected from the Great Lakes

to the continent and, therefore, reduced rainfall. For the

raw GCM simulation (Fig. 4e), the gradient is from

northeast to southwest, which is very different from the

downscaled results. Note, however, that the figure im-

plies more spatial information than actually exists for

the raw GCM values. The 48 3 78 area represents be-

tween 1 and 8 GCM grid cells, depending on the original

GCM resolution, with 6 of the models having only one or

two grid cells over the region (Table S1, http://dx.doi.org/

10.1175/JCLI-D-11-00565.s1.). This illustrates the danger

of simply interpolating low-resolution GCM data to

a higher-resolution spatial grid. The uncertainty that

exists in applying GCM data at the local scale is con-

siderably reduced by downscaling to a finer grid or to

point locations.

For the changes in monthly rain day totals, the spatial

patterns of the two downscaled results are similar to the

patterns of precipitation amount changes (Figs. 4b,d).

For the raw GCM simulations (Fig. 4f), nearly all the

stations have a reduced number of monthly rain days.

Increased precipitation with fewer rain days indicates an

increase in precipitation intensity, a common feature of

both observation and GCM simulations of future cli-

mate globally (Tebaldi et al. 2006; Ning and Qian 2009)

and for the Northeast United States (Hayhoe et al. 2007;

Shortle et al. 2009).

Figures 4g–r show projected changes in the various

precipitation metrics for summer and winter. The GCMs

show weak agreement with each other in summer and

strong agreement in winter in projected precipitation

over Pennsylvania (see, e.g., Fig. 11.12 in Christensen

et al. 2007; Shortle et al. 2009). From Figs. 4g–l, we see

that both downscaling approaches imply decreased av-

erage precipitation and reduced numbers of rain days

over nearly all of Pennsylvania in summer. The raw

GCM precipitation projections, by contrast, suggest in-

creased monthly precipitation amounts and decreased

monthly number of rainy days for most of Pennsylvania.

For winter months (Figs. 4m–r), both downscaling ap-

proaches and the raw GCM simulations indicate in-

creased average monthly precipitation amounts and rain

day totals. The magnitudes of the downscaled changes,

however, are once again smaller than the simulated

changes. As discussed below, this observation may in

part relate to the greater role played by changes in the

NAO in the downscaled precipitation projections.

3) ANNUAL VERSUS SEASONAL TRENDS

An aggregate measure of the projected twenty-first-

century trends in precipitation is provided by averaging

the differences between middle twenty-first century

2046–65 and late twentieth century (1981–2000) across

either all 17 stations, all nine GCM simulations, or across

both stations and GCM simulations. Figure 5 shows the

changes in monthly precipitation amount (y axis) versus

changes in monthly rain day totals (x axis) for the whole

year (Figs. 5a,b), summer (Figs. 5c,d), and winter (Figs.

5e,f), defined as the differences between the period 2046–

65 and the period 1981–2000. Figures 5a,c,e show the

results for nine GCMs averaged over 17 stations, and

Figs. 5b,d,f show the results for 17 stations averaged over

nine GCMs.

Considering all days of the year, downscaling of the

model simulations yields predictions of increased monthly

mean precipitation for both downscaling approaches

and all nine raw GCM simulations (Fig. 5a). Increases in

monthly mean precipitation are observed for all 17

stations using either the raw model precipitation or the

dual-humidity variables downscaling scheme and for

most stations using the relative humidity-only down-

scaling scheme (Fig. 5b).

TABLE 1. The changes of the downscaled and simulated average

monthly precipitation amounts and average monthly numbers of

rain days between the future period (2046–65) and historical period

(1961–2000) from nine GCMs over station Harrisburg.

GCM names DAa DNb DABc DNBd SAe SNf

CCCMA 8.53 0.18 8.70 0.39 8.65 20.16

CNRM 1.28 0.32 6.05 0.16 10.00 0.66

CSIRO3.0 4.06 0.07 2.02 20.10 5.65 20.19

GFDL2.0 21.06 20.10 2.34 0.49 13.16 20.20

GISS 2.79 0.39 3.07 0.40 24.66 3.26

IPSL 4.31 0.09 6.55 0.00 27.47 21.55

MIUB 22.85 20.16 0.61 20.07 27.93 21.36

MPI 5.70 0.54 6.35 0.48 8.09 0.09

MRI 3.32 0.09 0.75 20.03 3.56 20.54

Ensemble 3.10

Average 2.68 0.16 0.19 6.49 0.00

a DA is downscaled changes of average monthly precipitation

amounts with only relative humidity (mm).
b DN is downscaled changes of average monthly number of rain

days with only relative humidity (day).
c DAB is downscaled changes of average monthly precipitation

amounts (mm) with both relative humidity and specific humidity

(mm).
d DNB is downscaled changes of average monthly number of rain

days with both relative humidity and specific humidity (mm).
e SA is simulated changes of average monthly precipitation

amounts (mm).
f SN is simulated changes of average monthly number of rain days

(day).
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FIG. 4. The spatial distributions of changes in (a)–(f) annual, (g)–(f) summer, and (m)–(r) winter (left) mean monthly precipitation totals

(in mm) and (right) number of rain days (in days) based on (top) downscaling using relative humidity, (middle) downscaling using relative

humidity and specific humidity, and (bottom) raw GCM precipitation.
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For rain day totals, Fig. 5a shows that most GCM

simulations (averaging over stations) predict increasing

trends using either downscaling approach. By contrast,

the raw simulated precipitation indicates decreasing

trends for most of the simulations. All stations exhibit

increases using the dual humidity downscaling scheme

(Fig. 5b). The stations cluster around zero with one station

showing a decreasing trend in the downscaling with only

relative humidity. The raw GCM precipitation fields, by

contrast, show decreasing trends for all stations.

Greater inconsistencies are found at the seasonal scale.

For the summer season, averaging across stations (Fig.

5c), roughly half of the GCM simulations predict in-

creasing trends in both monthly mean precipitation and

rain day totals for both downscaling schemes as well for

the raw model precipitation field. Nearly all the GCMs

predicting increases in monthly mean precipitation also

predict increases in rain day totals. Averaging across

GCM simulations (Fig. 5d), most stations in the relative

humidity-only downscaling scheme, as with the raw

GCM precipitation field, show decreasing trends for

both monthly mean precipitation and rain day totals.

Using the dual humidity variables downscaling, however,

most stations show increasing trends for both monthly

precipitation amounts and monthly rain day totals.

For the trends of winter months, when averaging

across nine GCMs (Fig. 5e), most stations show consis-

tent increasing trends on both monthly precipitation

amounts and monthly number of rain days. This is more

evident in the results averaged across 17 stations (Fig. 5f),

with nearly all the GCM simulations showing increasing

trends on both monthly precipitation amounts and monthly

number of rain days, except several stations in the raw

GCM simulations. Usually, the trends from both down-

scaling approaches are smaller than the trends from the raw

GCM simulations.

Figure 6 compares the histograms of monthly precip-

itation amounts and monthly rain day totals based on an

FIG. 5. Future change of average monthly precipitation amount ( y axis, unit: mm) and monthly number of rain days

(x axis, Unit: day) for (a),(b) annual, (c),(d) summer, and (e),(f) winter months averaged over (a),(c),(e) all 17

stations and (b),(d),(f) over nine GCMs for the downscaled results with only relative humidity (circles), downscaled

results from both relative and specific humidities (triangles), and raw GCM-simulated precipitation (diamonds)

between period 2046–65 and period 1981–2000. The larger solid symbols show the average values of the group.
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ensemble of all nine GCMs from three approaches for a

single station, Harrisburg. For both sets of downscaling

results and for the raw GCM projections, there is a shift

to the right with a fewer number of occurrences of

months with lower rainfall amounts and an increase in

months with higher rainfall totals (Figs. 6a–c). For the

two downscaling approaches (Figs. 6d,e), there is also

a shift with a fewer number of occurrences of months

with small number of rainy days and an increase in

months with larger number of rainy days. For the raw

GCM projections (Fig. 6f), this shift appears on the

month with number of rainy days larger than 10, and

the magnitude of the shift is much smaller suggesting

a shift toward more intense rainfall events.

c. Analysis of uncertainties

1) COMPARISONS OF INTER-GCM
UNCERTAINTIES

There is considerably more uncertainty in the GCM

simulations of precipitation than there is in their ability to

simulate the larger-scale characteristics of the atmospheric

state. Because we use these large-scale characteristics

to downscale the precipitation, we get much closer

agreement between the GCMs with the downscaled

data than we do between the raw GCM simulations of

precipitation. Consequently, the downscaling reduces

some of the uncertainty that derives from different

GCM parameterization schemes. The uncertainty in-

troduced by using different input parameters for the

downscaling is much less than the reduction in un-

certainty obtained by using either of the downscaled

datasets compared to the raw GCM values. This is

further illustrated in Fig. 7, comparing the downscaled

and simulated ensemble-weighted averages of mean

monthly precipitation amount and monthly number of

rain days averaged across all 17 stations, together with

the corresponding inter-GCM uncertainties (computed

as the root-mean-square difference from the ensemble

average).

Figure 7a compares the downscaled and simulated

ensemble-weighted averages and inter-GCM uncer-

tainties of mean monthly precipitation amount. For the

annual changes using the downscaled results with only

FIG. 6. The changes of histogram of the (a)–(c) monthly precipitation amounts and (d)–(f) monthly number of rain days between future

period 2046–65 and historical period 1981–2000 from the (a),(d) downscaled results with only relative humidity, (b),(e) downscaled results

with both humidity variables, and (c),(f) raw GCM simulations.
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FIG. 7. The ensemble averages of (a) monthly precipitation amount changes and (b) monthly

number of rain days changes across nine GCMs (squares) and the corresponding inter-GCM

uncertainties (whiskers) for annual, summer, and winter months. The acronyms used in this

figure as defined as follows: downscaled amount changes with only relative humidity for annual

months (mm) (ADA); downscaled amount changes with dual humidity variables for annual

months (mm) (ADAB); amount changes from raw GCM simulations for annual months (mm)

(ASA); downscaled amount changes with only relative humidity for summer months (mm)

(SDA); downscaled amount changes with dual humidity variables for summer months

(mm) (SDAB); amount changes from raw GCM simulations for summer months (mm) (SSA);

downscaled amount changes with only relative humidity for winter months (mm) (WDA);

downscaled amount changes with dual-humidity variables for winter months (mm) (WDAB);

amount changes from raw GCM simulations for winter months (mm) (WSA); downscaled

number changes with only relative humidity for annual months (day) (ADN); downscaled

number changes with dual-humidity variables for annual months (day) (ADNB); number changes

from raw GCM simulations for annual months (day) (ASN); downscaled number changes with

only relative humidity for summer months (day) (SDN); downscaled number changes with

dual-humidity variables for summer months (day) (SDNB); number changes from raw GCM

simulations for summer months (day) (SSN); downscaled number changes with only relative

humidity for winter months (day) (WDN); downscaled number changes with dual-humidity

variables for winter months (day) (WDNB); and number changes from raw GCM simulations

for winter months (day) (WSN).
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relative humidity, five GCMs predict increases for the

monthly precipitation (see Table S2 for details; available

online at http://dx.doi.org/10.1175/JCLI-D-11-00565.s1.),

and the ensemble average of the nine GCMs is 0.18 mm.

For the downscaled results with both humidity values, six

of nine GCMs predict increased monthly precipitation,

and the ensemble-weighted average is 2.09 mm. For the

raw GCMs simulations, seven of nine GCMs predict in-

creases for the monthly precipitation, with an average of

7.02 mm. In each case, the root-mean-square difference

from the ensemble weighted average is the greatest for the

raw GCM precipitation.

Moreover, we also see that there is a seasonal differ-

ence, with the summer season showing greater variability

between models than winter. For summer precipitation,

although five of the GCMs simulate decreases in average

monthly precipitation amounts, the ensemble-weighted

average shows a 2.15 mm increase. This is primarily a re-

sult of the large increase of 31.75 mm (40%) in the GISS

GCM. Note that this model did less well at simulating the

historical precipitation with a 245% error compared to

observations (Ning et al. 2012). The downscaling with one

and two humidity values result in six and four models

producing drying respectively. In both cases, the models

are showing either a small increase in precipitation or a

larger decrease, such that the weighted ensemble average

suggests a slight drying. Including the specific humidity as

a parameter to help define the atmospheric state increases

the number of GCMs that project precipitation increases

when averaged across the state, but the ensemble mean is

still negative. This suggests that there is still considerable

uncertainty in the summer precipitation projections, al-

though the most likely projection is for little change or

possibly a slight drying. This uncertainty in summer pre-

cipitation projections and the large difference between

the GCM and downscaled projections also exist in dy-

namical downscaling conducted for North America (Chen

et al. 2003; Han and Roads 2004).

During winter, eight of the nine raw GCM projections

give increased monthly precipitation. Seven GCMs

project increases for the downscaling with RH only, and

six for the downscaling with both humidity values. This

level of agreement is most likely because of the strong

synoptic control on precipitation during the winter

months, with the differences between the raw GCM

values and the downscaling arising because of the in-

ability of the GCMs to capture the higher resolution

spatial variability. For both summer and winter, the

root-mean-squared error is again much smaller for the

downscaled projections than for the raw GCM data.

Figure 7b shows similar results but for the monthly

number of rain days changes. For annual changes, both

the downscaling with only relative humidity and raw

GCM simulation predict decreases of 20.04 and 20.07

days, while the downscaling with dual humidity variables

predicts an increase of 0.1 days. The downscaled inter-

GCM uncertainty with only relative humidity is 0.26 days,

and the downscaled uncertainty with dual-humidity vari-

ables is 0.25 days. And both of them are smaller than the

uncertainty from raw GCM simulations 1.29 days.

For summer months, both downscaling approaches

and raw GCM simulations predict negative ensemble

averages. The downscaling approaches with only rela-

tive humidity and with dual humidity variables predict

the ensemble averages of 20.41 days and 20.18 days,

and the raw GCM simulations predict the ensemble

average 20.39 days. The inter-GCM uncertainties of the

downscaled results are 0.52 and 0.43 days, which are

both smaller than the uncertainty of the raw GCM

simulations (1.31 days). Based on our downscaling re-

sults and GCM simulated results over the mid-Atlantic

region, it seems that the increased humidity brought by

global warming does not mean more or stronger con-

vection in the future.

For winter months, both downscaling approaches show

consistency with the GCM simulations on the ensemble

average but with reduced inter-GCM uncertainty. The

ensemble averages of the two downscaling approaches are

0.32 days and 0.37 days, which are close to the raw GCM

simulation (0.36 days). The inter-GCM uncertainties of

the downscaled results are 0.35 and 0.32 days, which are

still smaller than the uncertainty of raw GCMs simulations

(1.31 days).

So it can be concluded that for projections of both

precipitation amount and number of rain days, the two

downscaling approaches can obviously reduce the inter-

GCM uncertainties introduced by different physical

parameterizations from different GCMs.

2) NAO INFLUENCE ON WINTER PRECIPITATION

(i) Modern observational relationships

To examine the control of large-scale climate dynamics

on the synoptic circulation patterns governing winter

precipitation variability, we examined the relationship

between the primary such dynamical feature—the North

Atlantic Oscillation (NAO)—and winter precipitation

variability over Pennsylvania that is the focus of our

study. Figure 8a shows the time series of the observed

winter [December–March (DJFM)] NAO index, taken

from the University of East Anglia (Jones et al. 1997;

supplemented by more recent values available at http://

www.cru.uea.ac.uk/;timo/datapages/naoi.htm).Substan-

tial variability is seen on both interannual and inter-

decadal time scales. High-NAO (defined as anomalies

greater than 11 standard deviation above the long-term
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mean) years are 1966/67, 1982/83, 1988/89, 1991/92, 1992/

93, 1993/94, 1994/95, 1999/2000, while low-NAO years

(defined as anomalies as exceeding 21 standard devi-

ation below the long-term mean) are 1962/63, 1964/65,

1968/69, 1976/77, 1978/79, 1995/96, and 2000/01.

We performed a series of analyses to confirm the

NAO influence on synoptic-scale winter precipitation in

Pennsylvania. In Table 2, we composite winter precipi-

tation (December–March) for the years with high- and

low-NAO indices. All stations except West Chester (this

exception is likely due to the large amounts of missing

data for this station in question) show a clear NAO in-

fluence, with greater mean precipitation during low-

NAO years and less precipitation during high-NAO

years. The average differences over the 17 stations are

significant at greater than the p 5 0.05 level using Student’s

t test, consistent with the previously established finding

that positive NAO winters are associated with reduced

midlatitude storm influences on the region (Dong et al.

2010). In Fig. 8b, we show the composite SLP difference

between the high- and low-NAO winters, which displays

an increased penetration of the mean subtropical

Bermuda/Azores high into the mid-Atlantic region of

the United States, implying a blocking of midlatitude

storms, conducive to reduced storm-related winter pre-

cipitation in the region.

The relationship between the NAO and synoptic-

scale precipitation was then evaluated for each of the

nine GCM simulations. For each simulation, a winter

NAO series was calculated as the difference between

simulated SLP over the grid points closest to the centers

of Bermuda/Azores high and Greenland low. To assess

the ability of the models to reproduce the observed in-

fluence of the NAO on the synoptic-scale atmospheric

circulation, we calculated the difference in SOM node

frequencies between high- and low-NAO winters for

each GCM simulation over the historical period and

compared with a parallel analysis based on the NCEP

reanalysis data (Fig. 9). We also evaluated the statistical

significance of the node frequency difference patterns

(Fig. S2, http://dx.doi.org/10.1175/JCLI-D-11-00565.s1).

Having found that the main features in the SOM dif-

ference patterns shown in Fig. 9 are statistically signifi-

cant (Fig. S2, http://dx.doi.org/10.1175/JCLI-D-11-00565.s1),

we evaluated the degree of similarity between the ob-

served (NCEP) and GCM-simulated difference patterns.

We calculated the pattern correlation between the NCEP

SOM difference pattern and that of each of the 9 GCM

simulations, employing a one-sided hypothesis test (since

only a positive correlation is physical) assuming N 5 99 2

2 5 97 degrees of freedom. Only two of the models (GISS

and CCCMA) provide a statistically significant (p , 0.05)

match with the observational SOM difference pattern,

suggesting that these two models are best able to re-

produce the observed influence of the NAO on the

distribution of synoptic atmospheric circulation states

(see Fig. 9; the one-sided p 5 0.05 significance threshold

is r 5 0.166). Most of the models do, however, at least

capture the general shift from the upper-left corner of

the SOM (associated with high sea level pressure) to

the bottom-left corner (associated with low sea level

pressure).

There are some caveats to keep in mind in this anal-

ysis. In the NCEP observations, there is some tendency

for neighboring SOM nodes to change in opposite di-

rections, suggesting that the NAO influence on synoptic

circulation states is fairly subtle, that is, that the differ-

ences between high and low positive NAO states results

in somewhat subtle shifts in the strength or location of

high and low pressure centers. With the models on the

other hand, the changes in SOM occupancy show greater

coherency in state space, with adjacent SOM nodes

tending to change in the same direction. This discrepancy

might indicate a too simplified representation of synoptic

FIG. 8. The time series of the standard winter (DJFM) NAO

index for period (a) winter 1961/62–2010/11 and (b) the SLP dif-

ferences between the winters with high- and low-NAO indices

(unit: hPa). The shading indicates differences significant at the p 5

0.05 level.
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circulation states in the models, though it could alterna-

tively result from biases in observational (NCEP re-

analysis and station precipitation) data.

(ii) Projected changes

Figure 10 shows the relationship between projected

twenty-first-century trends of the NAO and projected

changes in mean winter (DJFM) Pennsylvania precipi-

tation. The NAO trends were defined by the best-fit

linear trend in the diagnosed NAO series for each GCM

over the common twenty-first-century period 2004–99.

The trends in precipitation were defined, as earlier, by

the differences between the simulated future period

2046–65 and the simulated late twentieth-century period

1981–2000 as before, averaged over all 17 Pennsylvania

stations. The symbols for GISS and CCCMA are high-

lighted for reasons discussed in the previous section.

From the figure, we can see that there is a very strong

relationship between changes in the NAO and changes

in winter precipitation, consistent with the substantial

dynamical control on Pennsylvania winter precipitation

evident for the late twentieth century in both NCEP

observations and the GCMs (see previous section).

Those models with the greatest tendency toward the

positive phase of the winter NAO tend to show the

greatest projected reduction in winter precipitation. The

relationship is substantially stronger for the downscaled

precipitation than for the raw GCM precipitation: r 5

20.74 and r 5 20.72 for the relative humidity-only and

dual-humidity downscaling. respectively (p ’ 0.01 in

both cases), versus a much lower r 5 20.22 (p 5 0.28)

for the raw GCM-simulated winter precipitation. It thus

appears that large-scale climate dynamics related to

NAO are playing a far more important role in winter

precipitation trends in the downscaled precipitation prod-

ucts than in the raw GCM simulations themselves. It is

reasonable to speculate that this is due to limitations in

the raw GCM simulation itself in capturing the subtle

controls on winter synoptic-scale precipitation in the

region that are alleviated or at least reduced through the

use of appropriate downscaling methods. This can be

tested through the composite analysis of the downscaled

precipitation and raw GCM simulated precipitation

during the GCM simulated high- and low-NAO winters

in the future study.

Given the critical apparent relationship in the down-

scaling exercises between projected changes in the winter

NAO and Pennsylvania winter precipitation, it is clear

that clarifying and understanding the nature of response

of the NAO to anthropogenic forcing is critical to re-

ducing uncertainty in projections of winter precipitation.

We note that six of the nine GCMs predict a tendency

toward the positive phase of the NAO in response to

projected anthropogenic forcing. That response is due at

least in part to the intensification and westward expansion

of the North Atlantic boreal winter subtropical High with

increasing CO2 (Li et al. 2011), though more subtle re-

sponses involving the stratospheric response to anthro-

pogenic forcing may be important (Miller et al. 2006).

Notably, the GISS model, which as discussed above

displays the closest relationship with the observations

with regard to the influence of the winter NAO on

TABLE 2. The average monthly precipitation amounts of the high- and low-NAO winters and their difference (unit: mm).

Station

No. Station names

Average monthly precipitation

of the winters with NAO indices

larger than one standard deviation

to the mean

Average monthly precipitation

of the winters with NAO indices

smaller than one standard deviation

to the mean

Difference between the

average monthly precipitation

of high- and low-NAO winters

1 Allentown 101.76 117.11 215.34

2 Chambersburg 87.37 99.61 212.25

3 Franklin 96.03 103.69 27.66

4 Greenville 76.60 92.59 215.99

5 Harrisburg 85.40 99.01 213.61

6 Johnstown 108.51 134.48 225.96

7 Montrose 115.96 130.71 214.75

8 New Castle 67.46 87.75 220.29

9 Palmerton 63.90 95.94 232.04

10 Ridgway 89.75 110.06 220.31

11 State College 89.16 97.88 28.71

12 Stroudsburg 100.44 125.91 225.47

13 Towanda 69.59 77.10 27.52

14 Uniontown 94.90 101.25 26.35

15 Warren 100.42 111.39 210.97

16 West Chester 102.50 94.84 7.66

17 York 99.67 100.33 20.66

Average 91.14 104.69 213.54
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synoptic-scale circulation states influencing winter

precipitation, projects a (modestly) negative NAO

response to twenty-first-century anthropogenic forc-

ing. This response contributes to a larger projected in-

crease in winter precipitation. On the other hand, the

other model (CCCMA) that reproduces reasonably well

the observed NAO influence on synoptic-scale circula-

tion, displays an opposite trend toward a more positive

NAO, mitigating any tendency for increased winter pre-

cipitation.

As noted earlier, a weaker relationship is found be-

tween the projected changes in the winter NAO and

winter precipitation using the raw GCM precipitation

field (Fig. 10c). We speculate that synoptic-scale atmo-

spheric dynamics are playing an artificially weak role in

this case, owing to a combination of low model resolution

and imperfect physical parameterizations of the processes

governing winter-season synoptic-scale precipitation. In

the absence of a realistic representation of large-scale

dynamical controls on winter precipitation, the models are

presumably producing an increase in precipitation in as-

sociation with the larger atmospheric water vapor mixing

ratios in a warmer winter climate. Consequently, the

models’ raw precipitation field, in eight of the nine model

simulations, shows an increase in winter precipitation in

the region.

4. Conclusions

Using a statistical downscaling method based on SOMs,

we have presented projections of future (midtwenty-first

century) changes in precipitation over the state of Penn-

sylvania. To examine the sensitivity of future precipitation

due to changes in atmospheric water vapor associated

with global warming, we tested two alternative approaches

to downscaling, using either one (relative humidity) or two

FIG. 9. The difference of the frequency distributions of winters with high- and low-NAO

indices from NCEP data and nine GCMs (unit: %). Spatial correlations with NCEP pattern are

given for each of the nine GCMs. White squares represent values of zero.

5288 J O U R N A L O F C L I M A T E VOLUME 25



(relative and specific humidity) humidity variables in cal-

ibrating relationships between atmospheric variability and

precipitation. An examination of the resulting SOM node

distributions and the associated quantization errors sug-

gests that the downscaling procedure is able to capture the

prevailing synoptic circulation patterns that characterize

the warmer climate of the midtwenty-first century for both

cases, thus providing justification for using the SOM-

based downscaling technique to project future changes

in precipitation.

The downscaled as well as the raw GCM-simulated

precipitation suggest an overall tendency for increa-

sing trends in annual precipitation. Seasonal precipitation

trends are more variable though. For summer precipi-

tation, there is a large spread among models, and while the

raw GCM precipitation and downscaling using relative

humidity alone yield decreasing summer precipitation for

most GCMs, downscaling using dual humidity variables

yields increases. Indeed, the additional use of specific hu-

midity in the downscaling always yields larger positive

precipitation projections, suggesting that explicit use, in

the training of the SOM, of specific humidity—which

increases sharply with temperature via the Claussius-

Clapeyron equation—yields greater sensitivity to the

increased water vapor content of the atmosphere in a

warming atmosphere.

For winter precipitation, there is greater agreement

among GCMs and downscaling approaches and with

raw GCM precipitation with regard to the projected

tendency for an increase in precipitation, but the mag-

nitude is strongly dependent on atmospheric dynamics

related to the NAO. Particularly in the downscaled es-

timates, which explicitly incorporate synoptic-scale at-

mospheric dynamics in estimating precipitation, there is

a tendency for greater winter precipitation increases in

those models with less positive-trending changes in the

NAO. In fact, downscaling of the minority of models

that project a more negative NAO yields, in several

cases, predictions of a decrease, rather than increase, in

winter precipitation.

FIG. 10. Projected trend in NAO ( y axis, unit: 1022 hPa yr21) against projected trend in mean winter

precipitation over Pennsylvania (x axis, unit: mm) with best-fit linear relationship (solid line). Shown

are results based on (a) downscaling with only relative humidity (r 5 20.74, p 5 0.011), (b) downscaling

with dual-humidity variables (r 5 20.72, p 5 0.014), and (c) the raw GCM-simulated winter pre-

cipitation (r 5 20.22, p 5 0.28). Results for GISS and CCCMA are highlighted as larger symbols, as

discussed in text.
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A method for generating ensemble average downscaled

precipitation estimates, based on the use of information

from the quantization errors in the downscaling approach,

is also introduced in this study. Application of this ap-

proach does reduce the inter-GCM uncertainty seen in

projections based on the raw GCM precipitation field, and

will in principle allow for reduced uncertainty in proba-

bilistic projections of future precipitation changes. In our

future work we will link this approach for creating down-

scaled ensemble projections to establish a novel Bayesian

hydroclimatological framework able to produce probabi-

listic projections of hydrological indicators (Singh et al.

2011).
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P. L. Vidale, 2003: Daily precipitation statistics in regional cli-

mate models: Evaluation and intercomparison for the European

Alps. J. Geophys. Res., 108, 4124, doi:10.1029/2002JD002287.

Gallus, W. A., and M. Segal, 2004: Does increased predicted warm-

season rainfall indicate enhanced likelihood of rain occur-

rence? Wea. Forecasting, 19, 1127–1135.

Han, J., and J. O. Roads, 2004: U. S. climate sensitivity simulated with

the NCEP regional spectral model. Climatic Change, 62, 115–154.

Hayhoe, K., and Coauthors, 2007: Past and future changes in cli-

mate and hydrological indicators in the US Northeast. Climate

Dyn., 28, 381–407.

Hershfield, D. M., 1971: The frequency of dry periods in Maryland.

Chesap. Sci., 12, 72–84.

Hewitson, B. C., and R. G. Crane, 2006: Consensus between GCM

climate change projections with empirical downscaling: precipita-

tion downscaling over South Africa. Int. J. Climatol., 26, 1315–1337.

Houghton, J. T., and Coauthors, Eds., 2001: Climate Change 2001:

The Scientific Basis. Cambridge University Press, 881 pp.

Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation:

Regional temperatures and precipitation. Science, 269, 676–679.

——, Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview

of the North Atlantic Oscillation. The North Atlantic Oscil-

lation: Climatic Significance and Environmental Impact, Geo-

phys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35.

Jones, P. D., T. Jonsson, and D. Wheeler, 1997: Extension to North

Atlantic Oscillation using early instrumental pressure obser-

vations from Gibraltar and South-West Iceland. Int. J. Cli-

matol., 17, 1433–1450.

Kohonen, T., 1989: Self-Organization and Associative Memory. 3rd

ed. Springer-Verlag, 312 pp.

——, 1995: Self-Organizing Maps. Spring-Verlag, 501 pp.

Li, W., L. Li, R. Fu, Y. Deng, and H. Wang, 2011: Changes to the

North Atlantic Subtropical High and its role in the in-

tensification of summer precipitation variability in the south-

eastern United States. J. Climate, 24, 1499–1506.
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