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[1] We analyzed annual North Atlantic tropical cyclone (TC) counts from 1871-2004,
considering three climate state variables—the El Niño/Southern Oscillation (ENSO),
peak (August-October or ‘ASO’) Sea Surface Temperatures (SST) over the main
development region (‘MDR’: 6-18�N, 20-60�W), and the North Atlantic Oscillation
(NAO)—thought to influence variations in annual TC counts on interannual and longer
timescales. The unconditional distribution of TC counts is observed to be inconsistent
with the null hypothesis of a fixed rate random (Poisson) process. However, using two
different methods, we find that conditioning TC counts on just two climate state variables,
ENSO and MDR SST, can account for much or all of the apparent non-random variations
over time in TC counts. Based on statistical models of annual Atlantic TC counts
developed in this study and current forecasts of climate state variables, we predicted
m = 15 ± 4 total named storms for the 2007 season.

Citation: Sabbatelli, T. A., and M. E. Mann (2007), The influence of climate state variables on Atlantic Tropical Cyclone occurrence

rates, J. Geophys. Res., 112, D17114, doi:10.1029/2007JD008385.

1. Introduction

[2] A number of past studies have examined climatic
influences on variations at interannual and longer timescales
in the occurrence and the intensity of North Atlantic
Tropical Cyclones (TCs) [e.g., Gray, 1984]. The primary
factor considered in past studies is the El Niño/Southern
Oscillation (ENSO) [e.g., Bove et al., 1998; Landsea et al.,
1999; Elsner et al., 2000; Elsner, 2003; Elsner et al., 2006;
Elsner and Jagger, 2006], though the influence of the North
Atlantic Oscillation (‘NAO’) has also been examined in
some studies [Elsner et al., 2000; Elsner, 2003; Elsner et
al., 2006; Elsner and Jagger, 2006]. Both phenomena are
believed to influence TC production, development, or
prevailing trajectories through their influence on storm
tracks or vertical wind shear in the tropical North Atlantic.
The ENSO phenomenon tends to enhance (diminish) TC
counts during storm seasons coinciding with an incipient La
Nina (El Niño) event, while the NAO tends to enhance
(diminish) TC counts during storm seasons coinciding with
an incipient negative (positive) phase winter. Influences are
historically found only during the storm season preceding
the anomaly in the index; there is no detectable impact on
the following year’s storm season.
[3] Sea Surface Temperatures (SST) over the main

development region (‘MDR’: 6-18N, 20-60W) for North
Atlantic TCs during the season (August-October or ‘ASO’)
of Peak TC production [Emanuel, 2005a; Webster et al.,

2005, 2006; Mann and Emanuel, 2006; Sriver and Huber,
2006; Elsner, 2006] have also been argued to be an impor-
tant influence on long-term North Atlantic TC behavior.
MDR SSTs are considered a proxy for potential TC intensity
[Emanuel, 2005a], with annual TC counts enhanced (dimin-
ished) in seasons associated with positive (negative) MDR
SST anomalies. Related studies have argued for a significant
influence of the so-called ‘Atlantic Multidecadal Oscillation’
(‘AMO’) on North Atlantic TC numbers [e.g.,Goldenberg et
al., 2001]. However, as the procedures used to define the
‘AMO’ signal in terms of North Atlantic SSTs in such
studies has been challenged in recent work [Trenberth and
Shea, 2006; Mann and Emanuel, 2006], we have chosen in
our analyses here to employ MDR ASO SSTs themselves [as
in e.g., Emanuel, 2005a; Mann and Emanuel, 2006; Elsner,
2006], rather than an index such as the ‘AMO’ derived
through statistical processing of the North Atlantic SST
field.
[4] Previous studies have investigated long-term trends in

TC statistics [e.g., Solow and Moore, 2000] or have used
regression models employing climatic indices [Gray, 1984;
Elsner et al., 2000, 2006; Elsner and Jagger, 2006] and trend
parameters [Elsner, 2003] to predict interannual variations in
TC activity. In no previous studies we are aware of, however,
have investigators examined whether conditioning on climatic
factors can account for the entirety of non-random structure in
the statistical distribution of historical North Atlantic annual
TC counts. In this study we perform such an examination,
employing two distinct and complementarymethods to test the
hypothesis that annual TC counts follow a state-dependent
Poisson process against the null hypothesis of a constant rate
Poisson random process.
[5] Any statistical approach to analyzing TC counts must

respect the Poisson distributional nature of the underlying
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process (that is, that TC counts are characterized by a point
process with a low occurrence rate). Our first approach
employs Poisson regression [see e.g., Elsner et al., 2000,
2001; Elsner, 2003; Elsner and Jagger, 2006], a variant on
linear regression which is appropriate for modeling a
conditional Poisson process in which the expected occur-
rence rate co-varies with some set of state variables (e.g.,
indices of ENSO, the NAO, and MDR SST). The second
approach categorizes the data with respect to the climate
state variables using a binary classification scheme, testing
both for the statistical significance of differences in occur-
rence rates between the resulting data subgroups, and
examining the resulting subgroup distributions for consis-
tency with a Poisson random process. The two methods are
complementary in that the latter method avoids the restric-
tive linearity assumptions implicit in regression, while the
former method accounts for continuous variations in
expected TC occurrence rates as a function of the underly-
ing state variables (e.g., distinguishing between the impacts
of strong vs. weak El Nino events).

2. Data

[6] Our analysis employed four data sets including
(1) historical annual North Atlantic TC counts, (2) the
December-February (DJF) Niño3.4 SST ENSO index,
(3) the December-March (DJFM) NAO index, and (4) Aug-
Oct (ASO) seasonal SST means over the main development
region (‘MDR’) of 6�–18�N, 20�–60�W. Our analysis was
confined to the 135 year interval 1870-2004 over which all
three primary data sets of interest were available. The more
recent seasons of 2005 and 2006 for which preliminary data
are available, are subsequently interpreted in the context of
these analyses, while forecasts for the 2007 season are made
based on projected values of the climate indices. Data are
available at the supplementary website: http://www.meteo.
psu.edu/�mann/TC_JGR07.
[7] Historical estimates of the annual TC counts are

available back to 1850 [Jarvinen et al., 1984]. The reliabil-
ity of these data, particularly prior to the late 20th century in
which satellite and aircraft reconnaissance are available, has
been vigorously debated in recent studies [e.g., Landsea,
2005; Emanuel, 2005b]. Emanuel [2005b] nonetheless
makes a credible argument for why long-term TC count
data should be reliable, even if TC intensity estimates are
not. As Emanuel [2005b] notes, prior to aircraft reconnais-
sance, ships crossing the Atlantic would not have been
warned off from a developing or approaching storm, and
were likely to encounter either the storm or evidence of its
existence. Combined with other impacts on islands or
coastal localities, the existence of an Atlantic tropical
cyclone was therefore likely to have been known, even
prior to aircraft reconnaissance.
[8] Various alternative indices of the El Nino/Southern

Oscillation (ENSO) are available. We employed the boreal
winter (DJF) Niño3.4 index (SST averaged over the region
5�S-5�N, 120�-170�W) favored by many investigators [e.g.,
Trenberth, 1997]. Use of alternative (e.g., Niño3) ENSO
indices yielded similar conclusions. The Niño3.4 index was
taken from the Kaplan et al. [1998] data set and updated
with subsequent values available through NCEP. The boreal
winter (DJFM) NAO index was taken from Jones et al.

[1997], updated with more recent values from the Univer-
sity of East Anglia/CRU. For simplicity, the ‘year’ was
defined to apply to the preceding storm season for both
indices (e.g., the 1997/1998 El Nino and winter 1997/1998
NAO value were assigned the year 1997).
[9] The MDR SST index was taken from the HadISST2

observational SST data set [Rayner et al., 2003] and
updated with more recent values from the UK Met Office.
The data were averaged over the season most relevant to
tropical cyclone formation (August-September-October, or
‘ASO’). Estimated uncertainties in the observational SST
data are relatively small back to 1870 for both the Nino3.4
and North Atlantic regions of interest in this study [see, e.g.,
Kaplan et al., 1998].

3. Methods

[10] As in previous studies [e.g., Elsner et al., 2000], we
assumed that annual TC counts n can be modeled as a
(Poisson) point process, viz.

Pi nð Þ ¼ 1=n!ð Þmn exp �mð Þ ð1Þ

where themean occurrence ratem, is the sole free parameter of
the distribution, and in the unconditional case has aMaximum
Likelihood value equal to the mean annual count. While the
appropriate null hypothesis holds the rate parameter m to be
constant over time, it is of interest to investigate the
alternative hypothesis that m may vary with respect to some
set of governing factors or ‘state variables’ [e.g., time—Solow
andMoore, 2000; Elsner, 2003 and/or climate state indices—
e.g., Elsner, 2003; Elsner and Jagger, 2006].
[11] For the purposes of our study, m was conditioned on

the three climate state variables discussed above (ENSO as
measured by the DJF Niño3.4 index, NAO as measured by,
the DJFM NAO index, and MDR SST as measured by the
MDR ASO SST index). Two distinct statistical approaches
were taken, as described below. We note that here is room
for further development of the methods presented below.
For example, one could extend the approaches used in the
present study to account explicitly for the increased uncer-
tainty in TC counts back in time, and in particular the
impact of unreported events [e.g., as in Solow and Moore,
2000; Elsner and Jagger, 2006].

3.1. Binary Classification Approach

[12] In this approach, each year is classified as belonging
to one of two possible binary states (positive or negative)
with respect to each state variable, depending on the sign of
the anomaly in that variable (relative to the 1870-2004
mean). An alternative tertiary classification procedure was
tested in which a third neutral category was introduced
(defined by absolute anomalies within one standard devia-
tion). The choice of binary vs. tertiary classification
schemes represents a tradeoff between the level of discrim-
ination (two vs. three states) and resulting sample sizes.
While similar results were obtained using the tertiary
categorizations scheme, we preferred the binary classifica-
tion scheme due to the larger sizes of the data sub-samples.
For similar reasons, only the two most significant (see
section 4 for further discussion) of the three state variables,
MDR SST and Niño3.4 were used.
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[13] Using the binary classification scheme, we catego-
rized years with respect to each of the two factors separately,
and further, into three distinct sub-groupings, defined as
(1) ‘favorable’: years in which both factors are favorable to
TC production (positive MDR SST and negative Niño3.4
anomalies), (2) ‘unfavorable’: years in which both factors
are unfavorable to TC production (negative MDR SST and
positive Niño3.4 anomalies), and (3) ‘neutral’: years in
which the two factors tend to offset in terms of their
favorability to TC formation, i.e., anomalies in MDR SST
and Niño3.4 that are of the same sign.
[14] We used a c2 test to evaluate the goodness-of-fit of a

Poisson distribution for both the unconditional (i.e., all
135 years grouped together) and conditional (i.e.,
‘favorable, ‘neutral’, and ‘unfavorable’) data categoriza-
tions. We assumed c2 to have n = B� 2 degrees of freedom,
where B is the number of occupied bins, and 2 degrees of
freedom are subtracted based on constraints provided from
the data (normalization of the distribution, and estimation of
the rate parameter m). The bin bandwidth was chosen using
the objective criterion cited by Wilks [2005],

h � cIQR=N1=3 ð2Þ

where N is the sample size, IQR is the inter-fourth quartile
range of the data, and c = 2 is taken for relatively skew
distributions such as the Poisson. h was rounded to the
nearest integer value.
[15] The t statistic was then used to evaluate the statistical

significance of the differences in TC rate parameter esti-
mates mi between any two data sub-samples. The t statistic
reduces to

t ¼ m1 � m2ð Þ= m1=f1 þ m2=f2ð Þ1=2 ð3Þ

using the expression for the sample variance of a Poisson
distribution, s2 = m, where f1 and f2 denote the degrees of
freedom in the respective sub-samples, and the degrees of
freedom in the t statistic is min(f1, f2) �1. When only
Niño3.4—which is serially uncorrelated—is used as a
conditioning variable, f1 and f2 reduce to simply N1 and
N2, the nominal sizes of the respective sub-samples.
However, significant serial correlation in the MDR SST
series (the lag one autocorrelation coefficient r = 0.55 yields
a decorrelation timescale t = 1.67 years) decreases the
effective number of independent climate states sampled
when conditioning on MDR SST as, e.g., two neighboring
years are not statistically independent with respect to the
enhanced likelihood of elevated TC counts. Reduced
degrees of freedom (f) were therefore taken into account
in estimating the statistical significance of t scores when
conditioning fully or partly on the MDR SST series. In such
cases, only events spaced more than two decorrelation
timescales (i.e., 3 years) apart were considered to constitute
statistically independent samples.
[16] Finally, we used a cross-validation procedure to

evaluate the predictive skill in the binary conditional Poisson
model approach. One could [see, e.g., Elsner and Jagger,
2006] leave each year out one at a time, forming conditional
TC rate parameter estimates based on the remaining years
and evaluating the skill of the resulting classifications

applied to each choice of missing year. However, when
serial correlation is present in the state variables, which as
discussed above is the case here, the results of such a cross-
validation procedure are likely to give too liberal an
estimate of skill. We therefore employed an alternative
split calibration/validation procedure. Conditional TC rate
parameter estimates were obtained using the first half (i.e.,
years 1870-1937) of the data, and subsequently used to
categorize the subsequent TC count data based on the
climate state variable anomalies (measured relative to the
calibration period baseline) over the latter half (i.e., years
1943-2004). This procedure was then repeated with the role
of the first and last half of the data sets reversed. The
average of the mean squared error (MSE) between the
predicted and observed TC count data obtained for both
sub-intervals was used as an estimate of cross-validated
MSE, which was compared to the MSE obtained over the
full (1870-2004) model development interval.

3.2. Poisson Regression

[17] Poisson regression is a variant on linear regression
appropriate for data such as TC counts for which the null
hypothesis of a Poisson distribution is appropriate [see
Elsner et al., 2000, 2001; Elsner, 2003; Elsner and Jagger,
2006 for further discussion]. Given a count series Y with
unconditional mean rate m believed to follow a state-
dependent Poisson distribution, Poisson regression esti-
mates a generalized linear model for the conditional
expected rate of occurrence l = E (Y) as a function of a
set of state variables X1, X2, . . ., XM, of the form,

logl ¼ b0 þ b1X1 þ b2X2 þ . . . :þ bMXM ð4Þ

or alternatively,

l ¼ exp b0 þ b1X1 þ b2X2 þ . . . :þ bMXM½ 	 ð5Þ

where the residuals are assumed to be Poisson distributed.
[18] Unlike ordinary linear regression, a closed-form

analytical solution to equation (5) is not possible. However,
it is straightforward to numerically estimate maximum
likelihood values for the regression parameters bi, and thus
obtain estimates for the conditional expected occurrence
rates li. The residual series ei = Yi � li + m can be analyzed
for consistency with a Poisson distribution based on a c2

test, as described in section 3.1 above.
[19] Poisson regression was performed for various com-

binations of climate state variables as discussed in more
detail in section 4. Cross-validation was performed using
the split calibration/validation procedure discussed in sec-
tion 3.1 wherein the regressions were performed alterna-
tively using the first and last half of the full data set, with
TC counts predicted and compared with observed counts
over the remaining independent half of the data set. Quality
of regression fit was measured by both the coefficient of
determination R2 and mean square error (MSE).

4. Results

[20] Certain relationships between annual TC counts and
the Niño3.4 and MDR SST time series are evident by

D17114 SABBATELLI AND MANN: CLIMATE AND ATLANTIC TROPICAL CYCLONES

3 of 8

D17114



inspection alone (Figure 1). The clear increase in TC counts
subsequent to the 1920s, and the positive trend over roughly
the past decade, closely coincide with corresponding ten-
dencies for positive MDR SST anomalies. Anomalously
low TC counts in certain years (e.g., 1982 and 1997)
correspond to prominent El Niño years, and the low TC
counts of the early 1990s correspond to general tendency
for El Niño-like conditions. The NAO has a weaker, but
nonetheless statistically significant impact on TC counts,
with a tendency for elevation of counts during negative
NAO years. The Pearson correlation coefficients between
the TC counts and the three predictors (r = 0.48 for MDR
SST, r = �0.32 for Niño3.4, and r = �0.25) are statistically
significant at the p < 0.0001, p = 0.0001, and p = 0.003
levels respectively for a two-sided hypothesis test, taking
into account the serial correlation in each series. The extent
to which these state variables can account for the non-
random structure in long-term TC counts is investigated
below using each of the two methods discussed in section 3.

4.1. Binary Classification Approach

[21] We first note that the unconditional distribution of
TC counts is highly inconsistent with the null hypothesis of
a random Poisson process. Based on a c2 test (Table 1) we
reject at the p < 0.05 level the null hypothesis of a Poisson
process for the entire TC count record 1870-2004. By
inspection (Figure 2, panel a), it is clear that there is
bimodality in the distribution which cannot be captured
by the model of a constant mean Poisson process.
[22] Conditioning on ENSO influences (i.e., on Niño3.4)

alone does not ameliorate this problem, as the conditional
distributions for negative Niño3.4 values (i.e., ‘La Nina’-
like behavior) is still observed (Table 1) to be inconsistent
(p < 0.05) with a Poisson distribution. Conditioning on

MDR SST provides significant improvement, though the p
values (p = 0.79 and p = 0.25 for +MDR SST and –MDR
SST respectively) average only just above the median (p =
0.5) level between acceptance and rejection of the null
hypothesis. However, when TC counts are simultaneously
conditioned on both Niño3.4 and MDR SST, we find that
the null hypothesis can likely not be rejected. The resulting
three separate distributions (‘favorable’, ‘neutral’, and
‘unfavorable’, as defined in section 3.1) are generally well
captured by a Poisson distribution (Figure 2, panels b-d).
While in one of the three cases (‘favorable’) the p value (p =
0.27) indicates a moderate 27% chance of falsely rejecting
the null hypothesis, the c2 tests yield an average value p =
0.70 for the three cases, well above the median expected
level for false rejection of the null hypothesis. The results of
the analysis are therefore consistent with the hypothesis that
the annual TC counts are produced by a state-dependent
Poisson process, with the occurrence rate being dictated by
two state variables (Niño3.4 and MDR SST).
[23] Having established the viability of a state-dependent

Poisson random model for the observed TC count data, we

Figure 1. Time Series (1870-2004) of (a) annual Atlantic TC counts, (b) MDR ASO SST time series,
(c) Niño3.4 DJF SST index, and (d) NAO DJFM SLP index. Red (blue) indicates positive (negative)
anomalies in TC counts and Hurricane-favorable (unfavorable) conditions in the three indices (MDR
SST, Niño3.4 and NAO). Note that year convention applies to the ‘D’ in DJF andDJFM for both ‘c’ and ‘d’.

Table 1. Results of Reduced c2 Tests Described in Texta

Scenario (1870-2004) c2/n n p

All Years 2.09 9 0.027
+MDR SST 0.59 8 0.79
�MDR SST 1.32 3 0.25
+Nino3.4 1.02 8 0.42
�Nino3.4 2.29 7 0.025
+MDR/�Nino (‘Favorable’) 1.27 6 0.27
�MDR/+Nino (‘Unfavorable’) 0.28 9 0.98
+MDR/+Nino or –MDR/-Nino
(‘Neutral’)

0.49 7 0.85

aIndicated are reduced c2 value (c2/n), degrees of freedom n and the p
value for rejection of the null hypothesis of a poisson distribution.
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assessed the statistical significance of differences in the
estimated conditional occurrence rates m. There is a clear
dependence of m both on each of the two state variables
separately and on the sub-categorization into the three
‘favorable’, ‘neutral’, and ‘unfavorable’ cases (Table 2).
The highest average annual TC count is found for the
‘favorable’ state (m � 11), while the lowest (m � 6) is
found for the ‘unfavorable’ state, with all other sub-group-
ings yielding intermediate values of m. While differences in
occurrence rate (Table 3) are highly significant conditioning
on either one of the two state variables (Niño3.4 or MDR
SST) alone, the most significant difference (i.e., lowest p
value) is observed conditioning on both state variables (i.e.,
the ‘unfavorable’ vs. ‘favorable’ categories). Partitioning
into the ‘favorable’, ‘neutral’, and ‘unfavorable’ categories
yields both individual distributions that as noted earlier are
on average consistent with Poisson, and mean TC occur-
rence rates that differ significantly between any two cate-
gories (Table 3). The MSE (Table 4) using the conditional
means from the binary classification approach (MSE =

10.80 for the full 1870-2004 model development interval,
and MSE = 11.79 in cross-validation) represents a signifi-
cant improvement over climatology (MSE = 13.75) or
persistence (MSE = 19.89). The cross-validation results,
however, suggest that the binary classification approach
gives moderately less predictive skill than the Poisson
regression approach, as discussed in more detail below.

4.2. Poisson Regression

[24] We performed univariate Poisson regression alterna-
tively using (i) MDR SST and (ii) Niño3.4 as state variables,
(iii) bivariate regression using both MDR SST and Niño3.4
as state variables, and (iv) multivariate regression using all
three climate state variables MDR SST, Niño3.4, and NAO
(Figure 3a). Cross-validated resolved variance R2 and MSE
scores were similar to the scores obtained from the full
model development interval 1870-2004, and far superior to
either climatology or persistence, indicating significant skill
in each of the regression models. Interestingly, the predic-
tive skill systematically increases while the consistency of
residuals (see Figure 3b) with a Poisson distribution
decreases as additional state variables are added to the

Figure 2. Histograms of TC counts n vs. bin centers (blue) with associated one standard deviation
uncertainties (±

p
n, yellow shading) and best fit Poisson distributions (red). Results are shown for

unconditional case (all data—panel a) and the ‘favorable, ‘neutral’, and ‘unfavorable’ sub-groupings
discussed in the text (panels b-d). Bin bandwidths were determined as discussed in text.

Table 2. Estimates of Occurrence Rate m for the Various TC Data

Sub-Groupings Discussed in Texta

Scenario (1870-2004) m N f

All Years 8.85 135
+MDR SST 10.33 64 28
�MDR SST 7.52 71 31
+Nino3.4 7.78 58
�Nino3.4 9.66 77
+Nino/+MDR (‘Favorable’) 10.94 35 20
�MDR/+Nino (‘Unfavorable’) 5.97 29 20
+MDR/+Nino or –MDR/-Nino (‘Neutral’) 9 71 33

aProvided are the sample sizes N and, where appropriate, the effective
sample size 8 accounting for temporal autocorrelation in state variables.

Table 3. Results of t Tests for Differences of Occurrence Rates m
Among the Different Sub-Groupings Discussed in Texta

Scenario (1870-2004) t F P

+MDR SST vs. �MDR SST 3.59 27 0.0006
+Nino3.4 vs. �Nino3.4 3.70 57 0.0002
Favorable vs. Unfavorable 5.41 19 <0.0001
Favorable vs. Neutral 2.15 19 0.02
Neutral vs. Unfavorable 4.02 19 0.0004

aIndicated are the effective degrees of freedom in the t statistic F =
min(81, 82) �1, and the one-tailed p value for rejection of the null
hypothesis of equal means.
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regression—i.e., first MDR only, then MDR and Niño3.4,
and finally MDR, Niño3.4 and NAO (Table 4). Improved
skill thus appears to come at a cost of increased bias in the
conditional TC rate estimates.
[25] Each of the Poisson regression models are seen to

improve significantly (as measured by both full 1870-2004
model development interval and cross-validation MSE
scores) over climatology (Table 4). Moreover, both bivariate
and three variable Poisson regression models yield signif-
icant improvements (as measured by MSE scores) over the
binary classification approach with MDR SST and Niño3
outlined in section 4.1. This further suggests a tendency for
a tradeoff between resolved variance (as determined from
regression and validation R2 and MSE scores) and bias (as
determined from the distribution of residuals) in modeling
TC counts. While the binary classification approach yielded
the greatest consistency with a pure state-dependent Poisson
process (as conditional distributions were consistent with
Poisson at a mean level p = 0.70), it also produced the least
resolved variance in modeling annual TC counts by condi-
tioning on two or more climate state variables.

4.3. Predictions

[26] The binary classification approach to modeling TC
numbers yields a simple forecasting scheme for seasonal TC
counts. Depending on the forecast values for the two state
variables (MDR ASO SST and DJF Niño3.4 anomalies) at
the start of the tropical cyclone season (June 1st), the
predicted TC total would be m = 6 ± 3 (i.e., between 3
and 9) for ‘unfavorable’ anomaly combinations, m = 9 ± 3
(between 6 and 12) for ‘neutral’ anomaly combinations, and
m = 11 ± 3 (between 8 and 14) for ‘favorable’ anomaly
combinations. It is instructive to interpret the two most
recent (2005 and 2006) Atlantic tropical storm seasons in
this context. The TC count for the 2006 season (n = 10) was
consistent with the predicted count (m = 9 ± 3) given the
observed ‘neutral’ conditions (positive MDR SST anomaly
and positive 2006/2007 DJF Niño3.4 anomaly—see
Table 5). The 2005 TC count (n = 28) is considerably more
difficult to explain, even given the ‘favorable’ (positive
2005 MDR SST and negative 2005/2006 DJF Niño3.4)
observed conditions, for which the predicted count is m =
11 ± 3. Given a mean expected rate m=11, the probability of

equaling or exceeding a TC count of n = 28 is �0.01%, i.e.,
implausible.
[27] The Poisson regression models all successfully pre-

dict the 2006 TC count within estimated uncertainties, but
like the binary classification approach, all significantly
under-predict the historic 2005 TC total of n = 28 storms
(Table 5, and also Figure 3a). However, the most skillful of
the Poisson regression models as judged by cross-validation
results (i.e., Table 3)—the three state variable model—
comes closest to the observed total with a predicted TC
count of m = 18 ± 4 The high predicted total in this case is a
result of simultaneously favorable conditions in all three
state variables (anomalously warm MDR ASO SSTs, La
Nina conditions in the tropical Pacific, and a substantially
negative phase NAO). Given a conditional expected mean
rate m = 18, the probability of observing or exceeding n = 28
storms is approximately 2%. In other words, for every
50 years with conditions similar to those observed for
2005, a TC count as high or higher than that observed
might be expected given the three variable Poisson regres-
sion model. In this case, the 2005 TC total is still observed
to be improbable, but not entirely implausible. It is of course

Table 4. Assessments of Predictive Skill for Competing Statistical

Models Considered in This Studya

Model/Predictors R2 full MSE full R2 valid. MSE valid p resid.

Climatology 0.00 13.75
Persistence 0.07 19.89
Binary Cond: MDR,
Nino

10.80 11.79

Poisson Reg: MDR 0.24 10.81 0.16 10.47 0.83
Poisson Reg: Nino 0.10 12.51 0.12 12.31 0.08
Poisson Reg: MDR,
Nino

0.33 9.37 0.26 9.95 0.35

Poisson Reg: MDR,
Nino, NAO

0.38 8.70 0.32 9.02 0.00

aMean square error (MSE) over the full model development period
(1870-2004) is indicated for each case. TheMSE for simple (i) climatological
mean and (ii) persistence predictions is provided for comparison. In the case
of Poisson regression models, the coefficient of determination (R2) is also
provided. Validation MSE and R2 scores are based on the split calibration/
validation procedures described in the text.

Figure 3. Poisson regression models of annual Atlantic
TC counts using the MDR ASO SST, Niño3.4, and NAO
series as predictors. Shown are (a) the statistical model fits
over 1870-2004 based on the two univariate, bivariate and
three-variable Poisson regressions (colored curves) along
with the observed TC counts for 1870-2004 (black curve),
observed TC counts for 2005 and 2006 (filled black circles),
predicted TC counts for 2005 and 2006 (unfilled colored
symbols) and 2007 (filled colored symbols). (b) Poisson
regression residuals as defined in text (colored curves) along
with the observed TC counts for 1870-2004 (black curve).
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possible that the true distribution of TC occurrence is
heavy-tailed, in which case the probability of very large
counts might be substantially greater than estimated
under the assumption of conditional Poisson statistics.
One could conceivably also argue that biases in the earlier
data [e.g., Landsea, 2005] leads to an underestimation of the
frequency of very large annual counts such as observed in
2005. However, our finding in section a that long-term TC
data are essentially consistent with random Poisson statistics
after controlling for dependence on two climate state
variables, would seem to argue against the proposition that
systematic biases compromise the reliability of the earlier
data [Landsea, 2005].
[28] Finally, we use the statistical models developed

above to forecast Atlantic TC counts for the 2007 tropical
storm season. At the time this manuscript was finalized,
weak La Nina conditions (Nino3.4 = �0.2) were predicted
by NCEP for winter 2007/2008. MDR SST anomalies were
currently similar to those observed for the 2005 season, so
we infer by persistence ASO MDR SST anomalies equal to
those for the 2005 season. As there is no basis for forecast-
ing the winter 2007/2008 NAO value, we assume climato-
logical mean DJFM conditions (NAO index = 0.47). Given
these assumed values, the binary classification approach
yields the ‘favorable’ forecast m = 11 ± 3, while each of
the Poisson regression models (with the exception of the
Niño3.4-only regression which yields a forecast m = 11 ± 3)
predict a total of m = 15 ± 4 storms for the 2007 tropical
storm season.

5. Conclusions

[29] Two different methods, a binary classification
scheme and Poisson regression, are used to condition
expected annual TC counts on climate state variables.
Modeling annual Atlantic TC counts as a state-dependent
Poisson process using the binary classification approach, we
find that two climatic factors, ENSO and tropical North
Atlantic MDR SST, are adequate to explain the apparent
non-random variability in historical variations in Atlantic
TC numbers. Modeling TC counts instead using Poisson

regression, we find that the most skillful statistical model
employs all three state variables considered in the study,
ENSO, tropical North Atlantic MDR SST, and the NAO, as
predictors. This three variable statistical model also comes
closest to predicting the historic 2005 TC count of 18,
ascribing unlike the other statistical models developed in
this study, a non-trivial probability for that event given the
climate state of 2005. However, analysis of residuals also
indicates some evidence of bias, implying the need for
cautious use of the model. Three of the four Poisson
regression models developed in the study predict 15 ± 4
storms for the 2007 Atlantic tropical storm season.
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