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Abstract. We present a selection of methodologies for using
the palaeo-climate model component of the Coupled Model
Intercomparison Project (Phase 5) (CMIP5) to attempt to
constrain future climate projections using the same models.
The constraints arise from measures of skill in hindcasting
palaeo-climate changes from the present over three periods:
the Last Glacial Maximum (LGM) (21 000 yr before present,
ka), the mid-Holocene (MH) (6 ka) and the Last Millennium
(LM) (850–1850 CE). The skill measures may be used to val-
idate robust patterns of climate change across scenarios or to
distinguish between models that have differing outcomes in
future scenarios. We find that the multi-model ensemble of
palaeo-simulations is adequate for addressing at least some
of these issues. For example, selected benchmarks for the
LGM and MH are correlated to the rank of future projections

of precipitation/temperature or sea ice extent to indicate that
models that produce the best agreement with palaeo-climate
information give demonstrably different future results than
the rest of the models. We also explore cases where com-
parisons are strongly dependent on uncertain forcing time
series or show important non-stationarity, making direct in-
ferences for the future problematic. Overall, we demonstrate
that there is a strong potential for the palaeo-climate simu-
lations to help inform the future projections and urge all the
modelling groups to complete this subset of the CMIP5 runs.
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1 Introduction

The Coupled Model Intercomparison Project (Phase 5)
(CMIP5) is an ongoing coordinated project instigated by
the Working Group on Coupled Modelling (WGCM) at the
World Climate Research Programme (WCRP) and consist-
ing of contributions from over 25 climate modelling groups
(and over 30 climate models) from around the world (Taylor
et al., 2012). Multiple experiments are being coordinated,
including historical simulations (1850–2005), future simu-
lations following multiple representative concentration path-
ways (RCPs) and crucially, for the first time in CMIP, three
sets of palaeo-climate simulations for the Last Glacial Maxi-
mum (LGM) (21 ka BP – Before Present), the mid-Holocene
(MH) (6 ka BP) and the Last Millennium (850–1850 CE).
The palaeo-climate simulations are also part of the Paleo-
climate Model Intercomparison Project (Phase 3) (PMIP3)
initiative.

The CMIP5/PMIP3 palaeo-simulations are true “out-of-
sample” tests in that none of the models have been “tuned” to
produce better palaeo-climates. Such tuning is not necessar-
ily unwise (see Schneider von Deimling et al., 2006 for an ex-
ample), but would complicate some of the potential analyses.
Because the same models are being used for both past and fu-
ture simulations, this archive of model output is a unique re-
source for research into the connections between model skill
and model predictions, and has the potential to greatly im-
prove assessments of future climate change.

There were many uncertainties in regional aspects of fu-
ture climate projections highlighted in the Intergovernmen-
tal Panel on Climate Change (IPCC) 4th Assessment Re-
port (AR4) (Meehl et al., 2007). These affected, for example,
the future of sub-tropical rainfall, El Niño–Southern Oscilla-
tion (ENSO) changes, potential declines in the North Atlantic
meridional circulation, and the fate of Arctic sea ice. Reduc-
ing the uncertainties in the projections could therefore have
significant real world consequences for both adaptation and
mitigation strategies.

There are three main classes of prediction uncertainty
which relate to (a) the choice of scenario, (b) internal vari-
ability (sometimes described as initial condition uncertainty),
and (c) the imperfections in the model (or structural uncer-
tainty) (Hawkins and Sutton, 2009). Scenario uncertainties
inevitably grow in importance with time, particularly after
about 30 yr due to the timescales associated with economic
change, CO2 residence time and ocean thermal inertia. Ini-
tial condition uncertainty is globally important on scales of
a few years (and longer at smaller spatial scales) but pre-
dictability is fundamentally limited by the chaotic dynamics
of the atmosphere and upper ocean. Thus at the multi-decadal
time horizon, reducing and/or better characterising structural
uncertainty is the only way to potentially reduce overall un-
certainty. These structural uncertainties (given a specific sce-
nario of future emissions and other drivers) arise from a com-
bination of model divergence – i.e. a large spread in model

predictions given the same future scenario, and model inad-
equacy – i.e. models that are collectively either incomplete,
inaccurate or are missing processes or feedbacks. The first
effect is explicit (though not completely explored) in a multi-
model ensemble, while the second is implicit and needs to be
assessed independently.

Observations provide the means to test the models and re-
duce these uncertainties but instrumental records of useful
data targets are few (essentially limited to in situ networks
of temperature and rainfall prior to the satellite era). Addi-
tionally, and perhaps more crucially, changes in the recent
past are relatively small compared to projections for the fu-
ture. Furthermore, the majority of skill metrics in historical
(20th century) simulations do not provide much guidance for
future projections: models that are either good or bad at simu-
lating some aspect of modern climate – the climatology, sea-
sonal cycle, or interannual variability – often give essentially
the same spread for the future (Santer et al., 2009; Knutti
et al., 2010b). The reasons for this can range from the tun-
ing procedure in the models, disconnects between the im-
portant physics at different timescales or in response to dif-
ferent drivers, or the very different magnitudes of change.
Palaeo-climate changes offer a substantially larger signal that
is commensurate with projected future changes and although
palaeo-climate records are often affected by substantial noise
and difficulties in interpretation (Schmidt, 2010), the most
robust reconstructions can provide a crucial test of model
performance over a wider range than is possible with the
20th century climate alone.

There have been many previous evaluations of palaeo-
climate simulations via earlier incarnations of PMIP, as well
as in many individual studies (see the review by Braconnot
et al., 2012). However, there has been a lack of analyses that
quantitatively link future simulations or forecasts with skill
or sensitivity in the palaeo-climate simulations (though see
Hargreaves et al., 2013 for an example). This is partly be-
cause (prior to CMIP5) palaeo-simulations were not done
with exactly the same versions of the models being used
for future projections and partly due to a lack of suitable
reconstructions for model evaluation. This paper is there-
fore specifically focused on making the connections between
palaeo-climate changes and the future rather than on under-
standing palaeo-climate change for its own sake.

We break this task into three main areas: (1) examples of
metrics that are robust across palaeo- and future simulations,
where skill in palaeo-climate evaluations builds credibility
for the projections going forward; (2) examples of metrics
that discriminate between different models in the past and
in the future, and thus may be used to weight model projec-
tions; and (3) examples where important caveats come into
play that prevent constraints from being useful. We specifi-
cally include examples in the third section where important
caveats currently limit the palaeo-climate constraints to pro-
vide guidance to others on pitfalls that can occur.
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The scope of the paper is as follows: Sect. 2 discusses
some background on dealing with the multi-model ensem-
ble, issues arising from the use of palaeo-climate proxy data
and the use of data-synthesis products; Sect. 3 discusses
specific examples of skill metrics that may have predictive
power in future simulations by showing robust behaviour
across palaeo and future experiments; Sect. 4 gives examples
that discriminate between future projections; Sect. 5 presents
some exploratory analysis of additional potentially useful
metrics that are problematic for various reasons; Sect. 6 con-
cludes and discusses the potential for further work in this
area.

2 Methodologies

2.1 Palaeo-climate reconstructions

Many of the problems in dealing with reconstructing climate
from palaeo-data are specific to the type of record, the time
period and resolution concerned – for instance, annually re-
solved tree rings have issues distinct from lower resolution
ocean sediment or pollen records (e.g. Kohfeld and Harrison,
2000; Ramstein et al., 2007; Jones et al., 2009; Harrison and
Bartlein, 2012). There are however a number of general is-
sues that affect the use of such data for model evaluation, in-
cluding the potential for multiple climate controls on a given
record, the scale over which they are representative, the need
to quantify (and take into account) reconstruction uncertain-
ties, and the sparse and uneven site coverage.

Records used for palaeo-climate reconstructions are in
general influenced by several different aspects of climate as
well as, potentially, non-climatic factors. For instance, oxy-
gen or hydrogen isotopes from ice cores, carbonates or or-
ganic matter, are climatically meaningful variables, but do
not necessarily have a one-to-one, stationary relationship
with temperature or precipitation (e.g. Werner et al., 2000;
Schmidt et al., 2007; Masson-Delmotte et al., 2011). Vege-
tation, in addition to being influenced by several aspects of
seasonal climate, is directly influenced by the atmospheric
CO2 concentration (Prentice and Harrison, 2009). There are
several approaches that have been adopted to overcome this
type of problem: the use of multi-proxy reconstruction tech-
niques, forward modelling of the system within a climate
model or using climate model output (see an example re-
lated to coral carbonate isotopes in Sect. 5.1) or other climate
prior, and model inversion or data assimilation. Multi-proxy
reconstructions rely on the idea that different types of record
will be sensitive to different aspects of climate, and that pool-
ing the information from each of these records therefore pro-
vides a more robust reconstruction of any specific climate
variable. In the sense that forward modelling (and by exten-
sion model inversion techniques) are based on physical and
or physiological knowledge of the given system, the use of
these approaches may be a more robust way of dealing with

the non-stationarity issue – however, as with climate models,
the results are constrained by the quality of the models and
the degree to which the system is well-understood (see for
example the discussion of CO2 fertilisation in Denman et al.,
2007).

The scale over which a record is representative can be a
major issue in comparing palaeo-data and model output. All
types of records are responding to basically local conditions,
though the scale over which the record is representative will
depend greatly on the variable and the resolved timescale.
Many records, such as tropical ice coreδ18O, may have
strong correlations with climate further afield (e.g. Schmidt
et al., 2007). Comparisons at local or regional scales often
require some form of dynamical or statistical downscaling of
model output, though there are many associated issues with
this (Wilby and Wigley, 1997). Alternatively, upscaling re-
constructions (for instance, through the use of gridding) can
often reveal large-scale patterns that models could be ex-
pected to resolve, although this requires a sufficiently dense
network of sites (see Sect. 3 for examples). Other approaches
include the use of cluster analysis to classify types of model
behaviour and to determine cohesive regions for comparison
with the large-scale patterns in the observations (e.g. Bonfils
et al., 2004; Brewer et al., 2007).

Palaeo-climate reconstructions are usually accompanied
by estimates of measurement or structural uncertainty.
However, in practice these uncertainties have rarely been
propagated into large-scale synthetic products (except in
terms of non-quantitative quality control measures, see
e.g. COHMAP Members, 1988) and even more rarely taken
into account when the reconstructions were used for model
evaluation. However, quantitative measures of uncertainty
have been included in more recent palaeo-climate syntheses
(e.g. MARGO Project Members, 2009; Bartlein et al., 2011)
and the use of fuzzy-distance measures (Guiot et al., 1999;
Harrison et al., 2013) provides an explicit way to take ac-
count of data uncertainties if these cannot be expressed with
Euclidean distance. It is worth noting that model-data differ-
ences cannot be expected to be smaller than the data uncer-
tainties themselves.

2.2 Modelling issues

There are two particular issues that are more problematic in
palaeo-climate simulations than, for instance, simulations of
the 20th century: model drift and forcing uncertainty. The
issue of coupled climate model drift arises because of the
long (∼ thousands of years) time required to bring the deep
ocean into equilibrium in coupled ocean-atmosphere mod-
els. In some cases, insufficient spin-up time may have been
allowed before specific experiments are started. While drift
also affects transient historical simulations, the magnitude of
the forcings in the 20th century means that residual drift is
usually a small component of the transient response. For sim-
ulations of the last millennium though, the forcings are much
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smaller, and drift in the early centuries of the simulation will
be a larger fraction of the modelled change (Osborn et al.,
2006; Fernández-Donado et al., 2013). One proposal to deal
with this is via a correction using the drift in the control sim-
ulation (i.e. calculating a smooth trend and removing it from
the perturbed simulation prior to analysis). While this works
well for temperature, it is not very good for variables that
exhibit threshold behaviour such as sea ice extent or precip-
itation. In practice, this issue needs to be assessed for each
proposed comparison.

Second, there are important uncertainties in the forcings
used for the palaeo-climate experiments. This is also true
for aerosols in the historical simulations but such issues are
more prevalent in palaeo-simulations. For example, the mag-
nitudes of solar and volcanic forcing over the last millen-
nium, and the size and height of ice sheets at the LGM are
sources of major uncertainty. In the last millennium experi-
ments, multiple forcing choices were proposed (Schmidt et
al., 2011, 2012), but few groups have attempted (as yet) to
comprehensively explore all the options, and this is also true
for uncertainties associated with other time periods. If an in-
sufficient range of different forcings is tested, it is plausi-
ble that mismatches between observations and simulations
may be wrongly attributed to the model (or observations),
when in fact they were related to a misspecified forcing
(e.g. Kageyama et al., 2001).

Third, there are many aspects of past climate changes
that are (currently) outside the scope of the available mod-
elling within CMIP5 (and more widely). Variability in the
last glacial period that involves complex ocean/ice sheet dy-
namics (such as Dansgaard–Oeschger events) are beyond
what can be analysed directly since the CMIP5-class of mod-
els does not have sufficiently interactive dynamic ice sheets.
There are also common biases across different models that
have more to do with the state of computational technology
than physics (for instance, poor or non-existent resolution of
ocean eddies). Other examples can easily be found.

For clarity in the rest of the text, we define the term “en-
semble” to denote the full multi-model database of results
across all CMIP5 scenarios (which encompasses all palaeo-
climate, historical, idealised and future projection simula-
tions). The future projections used here consist of the four
RCP scenarios (rcp26, rcp45, rcp6, rcp85) (future possibili-
ties that correspond roughly to greenhouse gas radiative forc-
ing at the year 2100, relative to the pre-industrial, of 2.6,
4.5, 6.0, and 8.5 W m−2, respectively) along with idealised
simulations that have been included to provide clean com-
parisons across models. The idealised simulations include a
1 % increasing CO2 simulation, the response to an abrupt in-
crease to 4xCO2, atmosphere-only simulations such as amip,
amip4xCO2 and amipFuture (where all models are forced
by the same pattern of ocean temperatures from the his-
torical period, with 4xCO2, and with a warm anomaly im-
posed respectively), or sstClim and sstClim4xCO2 simu-
lations (where ocean temperatures are held constant under

pre-industrial or 4xCO2 conditions). We use CMIP5 to re-
fer to the entire database, including the PMIP3 simulations.
Specific model simulations are referred to by their name in
the CMIP5 database (i.e. rcp85, past1000, piControl etc.),
while the scenarios or periods are referred to more generally
using a standard abbreviation or name (e.g. the LGM, MH,
RCP 4.5). We list the models that we have used in analyses
in this paper, along with the specific experiments and simu-
lation IDs, in Table 1. While the multi-model ensemble is a
useful source for addressing structural uncertainty, it should
be noted that the ensemble is not a controlled sample from a
well-defined distribution of plausible simulations.

2.3 Approaches to comparing reconstructions and
simulations

There has been a gradual evolution in the approaches for
comparing reconstructed changes and climate model sim-
ulations from essentially qualitative graphical comparisons
of output and reconstructions of the corresponding climatic
variables (e.g. Braconnot et al., 2007) to more quantita-
tive approaches that measure model-data mismatch via some
“metric” or distance function (e.g. Sundberg et al., 2012;
Izumi et al., 2013). Metrics based on correlations or rms
differences between fields of data and model output have
been commonly used in model evaluation for current cli-
mate (e.g. Taylor, 2001; Schmidt et al., 2006; Gleckler et
al., 2008). These methods provide opportunities for both
inter- and intra-generational model comparisons (Reichler
and Kim, 2008; Harrison et al., 2013). The concept of “skill”
as adopted in the numerical weather prediction commu-
nity is useful as a quantitative test of model performance:
that is, does a model produce a more accurate prediction
(match to the palaeo-climate record), than that which would
be achieved by a simple null hypothesis (Hargreaves et
al., 2013)? Most studies and metrics have focused on time
slice or time series comparisons, though it is worth point-
ing out that nothing precludes comparing the simulations
and palaeo-record in the frequency domain (e.g. Lovejoy and
Schertzer, 2012b).

While most standard comparisons focus on evaluating in-
dividual model simulations against the reconstructions, a dif-
ferent approach is to focus on the collective performance
of the ensemble as a whole. For instance, Hargreaves et
al. (2011) tested the ability of the PMIP2 ensemble to rep-
resent the Last Glacial Maximum in terms of its “reliability”,
defined as the adequacy of the ensemble, considered in prob-
abilistic terms, in predicting the changes documented in the
palaeo-climate archives during that interval. Multi-model en-
semble means can be informative and will generally outper-
form individual models (Annan and Hargreaves, 2011), but
care must be taken to assess the suitability of each included
model and (any) weighting of individual models needs to be
well justified (Knutti et al., 2010a).
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Table 1.List of models, institutions and experiments used in the analyses in this paper. Experiment names use the CMIP5 database shorthand,
and run numbers are the “rip” coding for each experiment.

Model name Model institution Experiments Run numbers

ACCESS-1.0 CSIRO (Commonwealth Scientific and historical r1i1p1
Industrial Research Organisation,
Australia), and BOM (Bureau of
Meteorology, Australia)

BCC-CSM1 Beijing Climate Center, China piControl r1i1p1
Meteorological Administration, China midHolocene r1i1p1

rcp85 r1i1p1

BNU-ESM College of Global Change and Earth piControl r1i1p1
System Science, Beijing Normal University amip r1i1p1

sstClim r1i1p1
sstClim4xCO2 r1i1p1
rcp85 r1i1p1

CanESM2 Canadian Centre for Climate Modelling and historical r[1-5]i1p1
Analysis, Canada rcp45 r[1-5]i1p1

CNRM-CM5 Centre National de Recherches piControl r1i1p1
Météorologiques/Centre Européen de historical r[1-10]i1p1
Recherche et Formation Avancée en Calcul midHolocene r1i1p1
Scientifique, France lgm r1i1p1

1pctCO2 r1i1p1
abrupt4xCO2 r1i1p1
rcp45 r1i1p1
rcp85 r1i1p1

CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial piControl r1i1p1
Research Organisation in collaboration with historical r[1–10]i1p1
the Queensland Climate Change Centre of midHolocene r1i1p1
Excellence, Australia rcp45 r[1–10]i1p1

rcp85 r1i1p1

EC-EARTH EC-Earth consortium piControl r1i1p1
historical r7i1p1
midHolocene r1i1p1
rcp45 r[1, 2, 6–9, 11, 12, 14]i1p1
rcp85 r1i1p1

FGOALS-g2 LASG, Institute of Atmospheric Physics, piControl r1i1p1
Chinese Academy of Sciences; and CESS, midHolocene r1i1p1
Tsinghua University, China rcp85 r1i1p1

FGOALS-s2 LASG, Institute of Atmospheric Physics, amip r1i1p1
Chinese Academy of Sciences; and CESS, midHolocene r1i1p1
Tsinghua University, China piControl r1i1p1

rcp85 r1i1p1
sstClim4xCO2 r1i1p1
sstClim r1i1p1

CMCC-CMS Centro Euro-Mediterraneo per I piControl r1i1p1
Cambiamenti Climatici rcp85 r1i1p1

GFDL-CM2.1 NOAA Geophysical Fluid Dynamics historical r1i1p1
Laboratory, US

GFDL-CM3 NOAA Geophysical Fluid Dynamics piControl r1i1p1
Laboratory, US amip r1i1p1

amip4xCO2 r1i1p1
sstClim r1i1p1
rcp85 r1i1p1
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Table 1.Continued.

Model name Model institution Experiments Run numbers

GFDL-ESM2G NOAA Geophysical Fluid Dynamics piControl r1i1p1
Laboratory, US historical r1i1p1

midHolocene r1i1p1
rcp85 r1i1p1

GFDL-ESM2M NOAA Geophysical Fluid Dynamics piControl r1i1p1
Laboratory, US historical r1i1p1

midHolocene r1i1p1
rcp85 r1i1p1

GISS-E2-H NASA Goddard Institute for Space Studies, piControl r1i1p1
US historical r[1–5]i1p[12]

GISS-E2-R NASA Goddard Institute for Space Studies, piControl r1i1p1, r1i1p141
US historical r1i1p[12], r[45]i1p3

past1000 r1i1p12[1–8]
midHolocene r1i1p1
lgm r1i1p15[01]
1pctCO2 r1i1p1
abrupt4xCO2 r1i1p1
rcp45 r[1–5]i1p1
rcp85 r1i1p1

HadCM3 Hadley Center, UK Met. Office, UK historical r[1–10]i1p1

HadGEM2-CC Hadley Center, UK Met. Office, UK piControl r1i1p1
historical r1i1p1
midHolocene r1i1p1
rcp45 r1i1p1
rcp85 r1i1p1

HadGEM2-ES Hadley Center, UK Met. Office, UK piControl r1i1p1
historical r1i1p1
midHolocene r1i1p1
rcp45 r[1–3]i1p1
rcp85 r1i1p1

INM-CM4 Institute for Numerical Mathematics, piControl r1i1p1
Russia historical r1i1p1

midHolocene r1i1p1
rcp45 r1i1p1
rcp85 r1i1p1

IPSL-CM5A-LR Institut Pierre-Simon Laplace, France piControl r1i1p1
historical r[1–4]i1p1
midHolocene r1i1p1
lgm r1i1p1
1pctCO2 r1i1p1
abrupt4xCO2 r1i1p1
rcp45 r[1–4]i1p1
rcp85 r1i1p1

IPSL-CM5A-MR Institut Pierre-Simon Laplace, France piControl r1i1p1
historical r1i1p1
midHolocene r1i1p1
rcp45 r1i1p1
rcp85 r1i1p1
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Table 1.Continued.

Model name Model institution Experiments Run numbers

MIROC-ESM Japan Agency for Marine-Earth Science and piControl r1i1p1
Technology, Atmosphere and Ocean midHolocene r1i1p1
Research Institute (The University of lgm r1i1p1
Tokyo), and National Institute for past1000 r1i1p1
Environmental Studies, Japan 1pctCO2 r1i1p1

abrupt4xCO2 r1i1p1
rcp85 r1i1p1

MIROC5 Atmosphere and Ocean Research Institute piControl r1i1p1
(The University of Tokyo), National historical r1i1p1
Institute for Environmental Studies, and midHolocene r1i1p1
Japan Agency for Marine-Earth Science rcp45 r[1–3]i1p1
and Technology, Japan rcp85 r1i1p1

MPI-ESM-P Max Planck Institute for Meteorology, piControl r1i1p1
Hamburg, Germany historical r1i1p1

past1000 r1i1p1
lgm r1i1p1
midHolocene r1i1p1
1pctCO2 r1i1p1
abrupt4xCO2 r1i1p1
rcp85 r1i1p1

MPI-ESM-LR Max Planck Institute for Meteorology, piControl r1i1p1
Hamburg, Germany historical r[1–3]i1p1

rcp85 r1i1p1

MPI-ESM-MR Max Planck Institute for Meteorology, piControl r1i1p1
Hamburg, Germany amip r1i1p1

amip4xCO2 r1i1p1
amipFuture r1i1p1
sstClim r1i1p1
sstClim4xCO2 r1i1p1
historical r[1–3]i1p1
rcp85 r1i1p1

MRI-CGCM3 Meteorological Research Institute, piControl r1i1p1
Tsukuba, Japan midHolocene r1i1p1

lgm r1i1p1
1pctCO2 r1i1p1
abrupt4xCO2 r1i1p1
rcp85 r1i1p1

NCAR-CCSM4 National Center for Atmospheric Research, piControl r1i1p1
US/Dept. of Energy/NSF amip r1i1p1

amip4xCO2 r1i1p1
amipFuture r1i1p1
sstClim r1i1p1
sstClim4xCO2 r1i1p1
midHolocene r1i1p1
lgm r1i1p1
1pctCO2 r1i1p1
abrupt4xCO2 r1i1p1
rcp45 r1i1p1
rcp85 r1i1p1

NCAR-CESM1 National Center for Atmospheric Research, historical r[5–7]i1p1
US/Dept. of Energy/NSF
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Table 1.Continued.

Model name Model institution Experiments Run numbers

NCAR-CESM1- National Center for Atmospheric Research, piControl r1i1p1
CAM5 US/Dept. of Energy/NSF amip r1i1p1

amipFuture r1i1p1
rcp85 r1i1p1

NCAR-CESM1- National Center for Atmospheric Research, piControl r1i1p1
BGC US/Dept. of Energy/NSF rcp85 r1i1p1

NorESM1-M Norwegian Climate Centre, Norway piControl r1i1p1
historical r[1–3]i1p1
midHolocene r1i1p1
rcp45 r1i1p1
rcp85 r1i1p1

NorESM1-ME Norwegian Climate Centre, Norway piControl r1i1p1
rcp85 r1i1p1

2.4 Linking past and future

The key task of this paper is to provide guidance and ex-
amples for deciding on whether the palaeo-climate simula-
tions have a connection to the future projections, and if so,
what the comparison to palaeo-reconstructions can imply for
the future. We stress that robust links between past and fu-
ture simulations can only be derived if the model configura-
tions used are the same in the different experiments. A pre-
viously common practice of using a lower resolution or dif-
ferently tuned or scoped model for past simulations than for
future projections, while perhaps convenient for efficiency,
is not appropriate because such variations often have lead
to substantial differences in sensitivity. Thus, all the exam-
ples discussed below link models that were identical (except-
ing boundary conditions and forcings) in the past and future
CMIP5 simulations.

We distinguish two ways in which palaeo-data-model
comparisons can be used as a guide to the future: (1) as a
validation of a robust relationship between diagnostics across
models and scenarios, or (2) as a method to discriminate be-
tween differently skillful models. In the first case, one would
search for properties or correlations that we expect to be fea-
tures of all climates within the ensemble, determine whether
that is the case, and use the palaeo-data to provide some in-
dependent support for that relationship. In the second case,
there is a prerequisite that for the diagnostic chosen, the
“skill” metric when it is compared to a reconstruction actu-
ally correlates to future outcomes within the ensemble. If this
is not the case, then the skill in that diagnostic is orthogonal
to the spread in the projections and cannot be used to con-
strain them. Even when such a relationship is found, we need
to consider whether it is physically meaningful to be confi-
dent that it has not arisen either though chance due to a small
sample size or as an artifact of the model or the experimen-
tal design. To gain confidence in such palaeo-constraint, we

also need to understand the physical processes that explain
the connections between past and future.

While connections may in principle be highly complex,
it is natural as a first step to consider whether a correlation
exists between past and future behaviour in the same diag-
nostic. The search for useful metrics (in this sense) using
modern data has generally been disappointing (Knutti et al.,
2010b), although there have been a small number of cases
where apparently meaningful relationships have been found
(Boé et al., 2009; Hall and Qu, 2006; Brient and Bony, 2012;
Fasullo and Trenberth, 2012). It is notable that the first three
examples relate future climate changes to externally forced
changes in the modern climate (decadal or seasonal varia-
tions), rather than using metrics based on the climatological
mean state alone. This lends support to our working hypoth-
esis that past variations seen in palaeo-climate simulations
will be informative about the future.

Where a credible relationship between past and future is
found, there is a range of methods that can be applied to use
observations to constrain future predictions (Collins et al.,
2012). One method, applied by both Boé et al. (2009) and
Hall and Qu (2006), is to take the observational estimate, and
use the relationship (often linear) embodied in the correlation
between past and future model output to project this value
into the future. An attractive feature of this approach, beyond
its simplicity, is that it readily allows extrapolation of the ob-
served relationship in the case where the true value is sus-
pected of lying outside the model range. An alternative ap-
proach, which has been widely applied to perturbed physics
ensembles, is more explicitly Bayesian and considers the en-
semble as a probabilistic sample. For the prior, equal weight
is typically assigned to each ensemble member. Probabilistic
weights are then calculated for each member of the ensem-
ble, according to their performance in reproducing the obser-
vations. This weighted ensemble now represents the poste-
rior estimate of future change. This method uses the model
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spread as a prior constraint which, depending on one’s view-
point and the specific case in question, may be considered
either a strength or weakness (Collins et al., 2012).

3 Robust relationships in past and future simulations

In this section we highlight examples of physically based cor-
relations between key diagnostics that show similar relation-
ships in the palaeo-climate simulations and in future projec-
tions (or the more idealised warming scenarios) and whose
fidelity can be assessed using the palaeo-climate record. If
these conditions are realised, the observations can be used to
support the model results, and thus help provide contingent
future predictions of one diagnostic given a potential change
in the other.

An important issue for assessing future climate impacts is
to what extent the large-scale mean temperature response can
be used as an index for more regional changes. We consider
the relationships between global mean temperature and tem-
perature changes in the tropics and other regions in Sect. 3.1,
and relationships between land and ocean temperatures in
Sect. 3.2.

3.1 Relationships between regional and global
temperature change

A common feature in future and palaeo-simulations is that
some parts of the world warm or cool at different rates. In fu-
ture climate simulations, the high latitudes warm more than
the low latitudes, as is also observed during the recent in-
strumental era. This “polar amplification” is also present in
LGM simulations and data, with a stronger cooling in the
high latitudes than in the tropics (Masson-Delmotte et al.,
2006a, b). Izumi et al. (2013) investigate high vs. low lat-
itude temperature changes in lgm, midHolocene, historical,
1pctCO2 and abrupt4xCO2 PMIP3/CMIP5 simulations and
find broadly consistent relationships for lgm, historical and
increased GHG forcings, between mean annual SST changes,
w.r.t to piControl, over the northern extratropics and the
northern tropics. However, the relationship is not consistent
for mean annual air temperatures in the lgm simulations com-
pared to the others because of the particular impact of the
northern ice sheets. Here we examine the relationships be-
tween changes in global mean temperature and change over
large-scale regions. The uneven distribution of the palaeo-
climatic reconstructions indeed suggests a focus on specific
regions, rather than the globe.

The main climate forcings for the LGM are the lower con-
centrations in atmospheric greenhouse gases and the pres-
ence of Laurentide and Fennoscandian ice sheets in the
northern extratropics. The ice sheets have a strong local
albedo effect (e.g. Braconnot et al., 2012) but also affect the
mid-latitude large-scale atmospheric circulation due to the
associated change in topography (e.g. Pausata et al., 2011;

Rivière et al., 2009; Laîné et al., 2009). However, away from
the direct ice sheet perturbations, we expect that the green-
house gas forcing would be the main forcing for the LGM
climate change and thus patterns of response may be similar
to future warmer climates (Hewitt and Mitchell, 1997).

We analyse the comparison between the mean annual sur-
face air temperature change over a region compared to the
global mean change for the abrupt4xCO2, 1pctCO2 and lgm
CMIP5 simulations from the 8 models for which the results
were available at the time of the analysis. We have consid-
ered the tropics (land+ oceans) and the tropical oceans as
targets, because they have been used previously in perturbed
physics ensemble studies (Schneider von Deimling et al.,
2006; Hargreaves et al., 2007), East Antarctica, for which
the temperature change has been shown to scale with global
temperature change for the LGM and the CMIP3 2xCO2 and
4xCO2 changes (Masson-Delmotte et al., 2006a, b) and the
mid-latitude region of the North Atlantic and Europe.

Figure 1 shows a clear relationship between the trop-
ical and global temperature change for the 1pctCO2 and
abrupt4xCO2 anomalies, both for the combined land and
ocean grid cells (top-left panel) and for ocean grid cells alone
(bottom-left panel), and this relationship is consistent across
these two experiments. The relationship for the LGM is am-
biguous because the results for 7 out of the 8 models clus-
ter around the same values. These appear to fall outside the
relationship which can be derived from the 1pctCO2 and
abrupt4xCO2 simulations, with a smaller LGM tropical tem-
perature change for a given global temperature change. This
may be because of an outsize influence of the LGM northern
hemisphere ice sheets on the global mean for this particular
climate. Furthermore, the models which simulate the small-
est (largest) warming for increased CO2 are not those which
simulate the smallest (largest) cooling for LGM. This implies
that either the impact from the lower GHG concentrations are
not symmetric compared to those for increased GHG con-
centrations, or that the ice sheet remote impact extends to the
tropics (as inferred by Laîné et al., 2009). The relationship
appears more consistent across experiments for East Antarc-
tica (Fig. 1, bottom-right panel) and, surprisingly given the
proximity of the ice sheets, over the North Atlantic/Europe
region (Fig. 1, top right panel).

In the second row of Fig. 1, we indicate the range of the re-
constructed LGM regional response. In the case of the trop-
ical oceans (bottom-left plot), this range is computed from
the MARGO (2009) data. Uncertainties are derived using a
bootstrap method, randomly drawing 1000 samples (of ran-
dom size, and with replacement) from the initial MARGO
data set. For each drawn site, we assume a Gaussian prob-
ability function centered on the mean reconstruction and
with a standard deviation equal to the uncertainty given in
the data set and we draw a possible value considering this
probability distribution function. We obtain 1000 estimates
of the mean value and compute its mean±2 standard de-
viations, which defines the shaded blue band on the Fig. 1.
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Fig. 1. Model average regional vs. global temperature changes for the glacial (in blue, the pre-industrial – LGM difference is shown),
years 120 to 140 of the 1pctCO2 simulations (in yellow, in comparison to piControl) and years 100 to 150 of the abrupt4xCO2 simulations
(in red, in comparison to piControl). For the bottom plots, the regional model average is taken only over grid boxes that correspond to
proxy data sites within the defined region (reconstruction range shown in blue shading). For the tropical oceans (bottom-left panel), the blue
shaded band shows the average±2× standard deviations of the present – LGM warming as evaluated by the bootstrap method from the
MARGO (2009) reconstructions, taking into account the uncertainty on the reconstructions (see main text). For East Antarctica, the blue
shaded band corresponds to the range of available reconstructions (5 sites)±1◦C (Braconnot et al., 2012). Definition of the regions: Tropics:
23◦ S–23◦ N; North Atlantic Europe: 45◦ W–90◦ E; 35–45◦ N; East Antarctica: 5◦ W–165◦ E; 70–80◦ S. The results have been computed for
all models in the database on 23 July 2012 for which there were results for the lgm, piControl, 1pctCO2 and abrupt4xCO2 simulations.

For East Antarctica, we “only” have 5 points, so we sim-
ply consider the uncertainty of±1◦C on the reconstruction
(Masson-Delmotte et al., 2006) and the range of available re-
constructions. In both cases, the available data discriminate
between the models, with 2 models out of 8 falling in the
range of the reconstructions for the tropical oceans and of
4 models out of 8 in the case of East Antarctica.

In summary, the range of model results for increased CO2
scenarios shows that there is a relationship between regional
and global temperature changes for all regions considered
here. The range of simulated LGM regional/global average
temperature change is smaller than in the increased CO2
runs. The results are consistent with the relationship de-
rived in future scenarios for East Antarctica and the North
Atlantic/Europe region. For the tropics, the LGM ratio is
smaller than that seen in future scenarios, which could be
due to the impact of ice sheets on the global mean temper-
ature change. Both data and models suggest an amplifica-
tion of changes from the tropics to Antarctica and the data
can help constrain the global LGM temperature change to
4.2 to 5◦C, but only weakly constrain the expected sensitiv-
ity to abrupt4xCO2 forcing (from 4.2 to 6.5◦C). Additional
sensitivity experiments will be needed to test the individual
impacts of CO2 and ice sheets and better understand the full

LGM response and the inter-model differences. These results
are based on only 8 models and will need to be revisited when
a larger number of simulations are available.

3.2 Land–ocean contrasts

Even though models show biases in the LGM when directly
compared to reconstructions (Fig. 1) there are large-scale re-
lationships which appear to be consistent for different cli-
mates. For instance, model results have consistently shown
that for the LGM, the continents cooled more than the ocean
(e.g. Braconnot et al., 2007, 2012; Laîné et al., 2009), while,
in a symmetric manner, predictions for future climate show a
stronger warming over land than over the oceans (e.g. Sutton
et al., 2007; Drost et al., 2012). The ratio between cooling
over non-glaciated land and cooling over the ocean for the
LGM tropics was∼ 1.3 in the PMIP1 computed sea surface
temperature (SST) simulations (Pinot et al., 1999), a result
close to the ratio of∼ 1.5 found in both the PMIP2 fully cou-
pled LGM experiments (Braconnot et al., 2012) and CMIP3
future projections (Sutton et al., 2007). Izumi et al. (2013)
evaluated this land-sea ratio from the CMIP5 lgm, piCon-
trol, historical, 1pctCO2 and abrupt4xCO2 simulations and
found consistent land-sea ratios for global changes and for
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Fig. 2. Left panels: average surface air temperature change, compared to piControl, over land compared to over the oceans for the tropics
(23◦ S–23◦ N) and the North Atlantic and Europe region (45◦ W–90◦ E, 35–45◦ N). LGM – piControl in blue, 1pctCO2 – piControl in
orange, abrupt4xCO2 – piControl in red. For the latter 2 periods, the averages have been computed over the same years as Fig. 1. The
results have been computed for all models in the database on 23 July 2012 for which there were results for the lgm, piControl, 1pctCO2 and
abrupt4xCO2. The grey lines indicate the 1 : 1.5 ratio in both plots. The results from the reconstructions are based on the MARGO (2009)
data for the oceans and on the Bartlein et al. (2011) data for the continents. The error bars show twice the standard deviation of the distribution
of the mean temperature changes over the region, as estimated by the same bootstrap method as described for the bottom-left plot of Fig. 1
and in Sect. 3.1. Right panels: plots show the land-sea ratio computed from the data, again with the same bootstrap method. The horizontal
bar shows the median ratio, the thick vertical line shows the 25–75th percentiles and the thin lines the 10–90th percentiles. The model results
are computed by a bootstrap method applied on all model results, as explained in the text. The definition of the thin/thick vertical lines and
horizontal bar are the same as for the data.

the northern and southern extratropics as well as for the trop-
ics, though the ratio varies with latitude and is smallest in the
tropics.

Figure 2 shows temperature changes over land vs. oceans
for the tropics and North Atlantic/Europe. As also shown
by Izumi et al. (2013), the relationship between tempera-
ture changes over land and over the oceans appears to be
broadly consistent for the lgm, 1pctCO2 and abrupt4xCO2
results, though the degree of agreement in the land-sea con-
trast varies across regions. Furthermore, even though models
appear to overestimate temperature changes both over land
and oceans in the tropics, and to underestimate them in the
North Atlantic/Europe region, the land-ocean ratio appears to
be consistent with the data. The right-hand panels in Fig. 2
were built by estimating the distribution of the ratios between

mean temperature changes over land and over the oceans us-
ing a bootstrap method on the data from Bartlein et al. (2011)
for continental data and MARGO (2009) for the ocean data
and taking their uncertainties into account (as for Fig. 1). A
similar approach is used for the models, selecting only from
points where target reconstructions exists. Coefficients are
taken from a linear regression constrained to pass through the
origin from 1000 trials. The results show that for the tropics,
the land-sea ratio is consistent for the different periods, and
model-derived ratios are themselves consistent with the re-
constructions. This is also true for the North Atlantic/Europe
region, although in this case, the LGM results are more offset
from the increased CO2 results.
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We conclude that these relationships are robust, although
the reasons for this appear to be imperfectly understood
(Lambert et al., 2011) and will require, as for the results from
Sect. 3.1, additional sensitivity and process-based analyses.
Incidentally, it is worthwhile to note that the land–ocean re-
lationship was previously used to highlight the inconsistency
between an earlier compilation of tropical LGM sea surface
temperatures and adjacent continental reconstructions (Rind
and Peteet, 1985).

4 Palaeo-derived measures of skill that discriminate
between models

In this section we highlight diagnostics for which we have
commensurate palaeo-climate information and for which the
skill metrics across the ensemble serve to discriminate be-
tween models that show different behaviours in future pro-
jections. This requires that we demonstrate that differences
in future sensitivity are correlated to past sensitivities, and
that palaeo-reconstructions exist that can effectively weight
the projections from models with more realistic sensitivity
in the past more highly in an ensemble projection. We il-
lustrate this with three examples: in Sect. 4.1, we look at a
simple binary grouping of model behaviour related to South
American rainfall that can be evaluated using information
from the mid-Holocene. Section 4.2 revisits attempts to con-
strain overall climate sensitivity using information from the
LGM, and Sect. 4.3 looks at the potential to estimate sea ice
sensitivity to Arctic warming through results from the mid-
Holocene.

4.1 Rainfall change in South America

Projections of precipitation change in South America have a
large spread in the CMIP3 (Meehl et al., 2007) and CMIP5
(Knutti and Sedlá̌cek, 2012) archives. In future projections,
most models simulate a dipole of precipitation change in
northern South America. However, the sign and magnitude
of this dipole depends on the model: some models simu-
late drier conditions in Guyana, Venezuela and Colombia and
wetter conditions in Nordeste and eastern Brazil, while some
model simulate the opposite changes (Fig. 3).

We define the precipitation dipole as the annual-mean
precipitation averaged over 0–8◦ N; 50–60◦ W (hereafter
“Guyana”) minus the annual-mean precipitation averaged
over 5–15◦ S, 35–45◦ W (hereafter “Nordeste”). We divide
28 different models from the CMIP5 archive into two equal
groups. Models where the dipole is weak or negative in the
changes in precipitation between rcp85 and piControl are
placed in group 1; models which have a strong positive dipole
are in group 2. All of the models simulate similar patterns of
present-day precipitation, although models in group 2 tend to
have a more pronounced double ITCZ. Among the models,

midHolocene output was available for 7 models in group 1
and for 5 models in group 2.

Figure 3 shows a link between precipitation change in the
future and in the MH. Models in group 1 simulate wetter
conditions in Guyana and drier conditions in Nordeste, asso-
ciated with a northward shift of the ITCZ in the rcp85 and a
broadening of the ITCZ in the MH simulations. Conversely,
group 2 models simulate drier conditions in “Guyana” and
wetter conditions in “Nordeste”, associated with a south-
ward shift of the Intertropical Convergence Zone (ITCZ).
They show a similar dipole in the MH, with a strong south-
ward shift of the ITCZ. Thus the models from a particular
group show essentially the same change in the dipole pattern
and the same shift in the ITCZ in both future and MH sim-
ulations. These patterns are robust relative to the numbers
of groups or the number of models included in any group.
Palaeo-data from South America show drying everywhere
except northeastern Brazil (Prado et at., 2013), a response
which is more consistent with group 1 than group 2.

The processes underlying these patterns can be investi-
gated using a variety of other CMIP5 simulations. Table 2
shows correlations between precipitation changes and other
features of the simulations. Shifts in the ITCZ in the future
projections are associated with shifts in the SST dipole in the
Atlantic: models that shift the ITCZ the furthest southwards
are those with the strongest warming south of the Equator rel-
ative to the rest of the Atlantic. However, while ITCZ shifts in
response to SST dipoles are expected (e.g. Kang et al., 2008),
this is not the dominant pattern for the MH to PI change.
Some of the model behaviours are seen in the amipFuture
and sstClim4xCO2 simulations, indicating that the intrinsic
response of the atmosphere to a given SST change plays a
key role in the formation of the dipole. This is consistent
with the fast atmospheric response to CO2 being an impor-
tant component of the total precipitation response in global
warming (e.g. Bala et al., 2010; Bony et al., 2013). Models
that have reduced precipitation over northern South Amer-
ica in the MH simulations also have reduced precipitation
in the projections and under 4xCO2. These models have the
strongest land surface warming in response to both 4xCO2
and MH forcing. Although the precipitation response of the
different groups of models to a change in forcing differs,
within each model group the response to different forcing
(SST changes, orbital forcing, 4xCO2) is similar. This sug-
gests that common mechanisms are involved in the precipi-
tation response to all forcings, and that we can expect future
changes to resemble those predicted by the group 1 mod-
els. A more quantitative assessment of these changes still re-
mains to be finalised.

4.2 LGM constraints on climate sensitivity

The LGM has been a prime target for assessments of cli-
mate sensitivity since it is a quasi-stable period with sig-
nificant climate differences from today, with reasonably
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Fig. 3. (a)Relationship between the precipitation dipole change from pre-industrial to future climate under RCP 8.5 for the 2080–2100 and
the precipitation dipole change from pre-industrial to mid-Holocene. The precipitation dipole is defined as the difference of precipitation
change in RCP 8.5 between the “Guyana” region and the “Nordeste” region. Only those models within each group that had both rcp85 and
midHolocene data available at the time of the analysis are plotted. Other models that provided only rcp85 data are listed for completeness,
but without any markers.(b) Maps of precipitation changes from piControl to rcp85 (top panels) and from piControl to midHolocene (bottom
panels) in average over all available models in group 1 (left panels) and in group 2 (right panels). Contours show corresponding SST changes.
The boxes over land and ocean show the areas used in the dipole definitions.

well-known boundary conditions and sufficient data to re-
construct large-scale climate shifts (e.g. Lorius et al., 1990;
Edwards et al., 2007; Köhler et al., 2010; Schmittner et al.,
2011; PALAEOSENS Project Members, 2012). This pro-
vides a good opportunity to apply the methods described in
Sect. 2 as a proof-of-concept estimate of the equilibrium cli-
mate sensitivity based on the CMIP5 LGM simulations.

We use an ensemble of opportunity consisting of 7 mod-
els which participated in the PMIP2 experiment, together
with 7 CMIP5 models for which sufficient data were avail-
able (at time of writing). Estimates of the climate sensi-
tivities of these models were obtained from a variety of
sources and were derived using a range of methods: For the
PMIP2/CMIP3 models, sensitivity was generally calculated
using a slab ocean coupled to the atmospheric component
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Table 2. Correlation of different variables with future precipitation change in the RCP 8.5 scenario. Precipitation changes are defined as
in Fig. 3: annual-mean precipitation averaged over 0–8◦ N; 60–50◦ W minus annual-mean precipitation averaged over 5–15◦ S; 45–35◦ W;
SST dipole changes are defined as the annual-mean change in SST averaged over 3–15◦ N; 50–20◦ W minus the annual-mean change in
SST averaged over 3–15◦ S; 20–30◦ W (see boxes on Fig. 3b). Land surface warming is the annual-mean warming averaged over 0–15◦ S;
50–70◦ W. The double ITCZ index is defined as the annual-mean precipitation averaged over the southern branch (3–7◦ S; 20–35◦ W) minus
the annual-mean precipitation averaged over the northern branch (3–7◦ N; 20–35◦ W).

Variable Correlation No. of p value
(r) models

midHolocene-piControl:1 precip 0.69 12 0.013
rcp85-piControl:1 SST dipole 0.47 28 0.012
midHolocene-piControl:1 SST dipole 0.22 12 Not significant
amipFuture-amip:1 precip 0.55 9 0.125
sstClim4xCO2-sstClim:1 precip 0.67 12 0.017
sstClim4xCO2-sstClim:1 SAT (land) 0.62 12 0.032
midHolocene-piControl:1 SAT (land) 0.55 12 0.063
double ITCZ index in piControl −0.48 28 0.010

(Meehl et al., 2007), whereas in CMIP5, the most readily
available estimates use a regression based on a transient sim-
ulation (Andrews et al., 2012). These estimates are not per-
fectly commensurate, with some models reporting a 10 %
difference in the two methods (e.g. Schmidt et al., 2014).
Unfortunately, some of the PMIP2 models used for the LGM
simulations differ from the CMIP3 versions for which the
sensitivity estimates were made (for example, MIROC3.2).
Thus, while the values used here may be somewhat incon-
sistent and imprecise, we expect the uncertainty arising from
these sources (around 0.5◦C) to be modest in comparison to
the range of values represented across the ensemble (roughly
2–5◦C). The boundary conditions for the LGM simulations
are essentially unchanged between PMIP2 and CMIP5 (save
for changes in the shape of the imposed ice sheets), allow-
ing us to consider these experiments as broadly equivalent
though there are some systematic biases due to the total ice
volume and resulting changes in land/sea mask (Kageyama
et al., 2013). Limitations in the boundary conditions (such
as the exclusion of dust and vegetation effects) which we do
not attempt to account for here, could introduce additional
bias and uncertainty into our result. For these and other rea-
sons discussed below, these results should be considered as a
proof of concept rather than conclusive.

The LGM was associated with a large negative radiative
forcing with respect to the pre-industrial including substan-
tially lower concentrations of greenhouse gases (e.g. Köhler
et al., 2010). However, the ensemble does not show the
expected negative correlation between climate sensitivities
and their globally averaged LGM temperature anomalies
(over the full 100 yr of simulation output) (Fig. 4a, see also
Crucifix, 2006). Hargreaves et al. (2012) analysed the PMIP2
ensemble on a regional basis and found their LGM temper-
ature changes in the tropics to exhibit a negative correlation
with climate sensitivity, most strongly in the latitude band
20◦ S–30◦ N. Results from the PMIP3 models are consistent

with this relationship, but do not strengthen it. When we
combine all models into one ensemble, the correlation over
this region weakens to−0.54 but it is significant at the 95 %
level.

The correlation is generally insignificant at higher lati-
tudes where the feedbacks in response to large cryospheric
changes may be very different to those exhibited in a fu-
ture warmer climate. There is also a strong positive corre-
lation in the southern ocean (i.e. colder LGM anomalies are
linked with lowersensitivity), possibly due to the large range
of biases in the control climate (Fig. 4c). The correlation
of piControl temperatures to sensitivity points to the Arctic
and the southern oceans as regions where base climatology
strongly impacts sensitivity, probably via cloud effects (see
Trenberth and Fasullo, 2010 for a discussion). The significant
negative correlation between the LGM temperature anoma-
lies in the latitude band 20◦ S–30◦ N, and the climate sensi-
tivities of the models (Fig. 5), is physically plausible, since
this region is far from the cryospheric and sea ice changes of
the LGM, and the forcing here is dominated by the reduction
in greenhouse gas concentrations. Assuming that the correla-
tion with tropical temperatures provides a valid constraint on
the real climate system, we can use this correlation to project
a reconstruction of past change onto the future, as in Boé et
al. (2009).

Annan and Hargreaves (2013) generated a new estimate
of LGM temperature changes, based on a combination of
several multiproxy data sets, and the ensemble of PMIP2
models. The method does not depend on the magnitude
of changes estimated by the models, but only their spa-
tial patterns. Due to the suspicion that the tropical tem-
peratures at the LGM from the MARGO synthesis are too
warm (e.g. Telford et al., 2013), we focus here on the results
from the sensitivity test in Annan and Hargreaves (2013),
where reconstructed tropical temperatures were decreased
uniformly by 1◦C. Using the resulting estimate of LGM
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Fig. 4. (a) Global mean LGM temperature change versus overall climate sensitivity to 2xCO2. (b) correlation between local LGM air
temperature anomaly and climate sensitivity across the model ensemble.(c) correlation across the model ensemble between control run
temperatures and climate sensitivity.
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Fig. 5. Using LGM tropical temperature as a constraint on climate
sensitivity. Cyan and blue dots represent PMIP2 and CMIP5 sim-
ulations respectively. Linear regression and predictive uncertainty
range are plotted as solid and dashed blue lines respectively. Small
red dots represent a Monte Carlo sample from the estimated proxy-
derived reconstruction, mapped onto the climate sensitivity.

temperature change in the 20◦ S–30◦ N latitude band of
−2.2± 0.7◦C (at 90 % confidence), the predicted value for
climate sensitivity arising from the correlation is 3.1◦C, with
a 90 % interval of 1.6–4.5◦C calculated by Monte Carlo sam-
pling, but this range is sensitive (by up to 0.4◦C) to the re-
construction uncertainties (Annan and Hargreaves, 2013).

In a more explicitly Bayesian approach, we can initially
assign equal probability to each model in the ensemble.
This choice can be questioned, given both the range of
model complexities, and also the possible inter- or intra-
generational similarities between models of related origins
(Masson and Knutti, 2011). However, quantifying these
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Fig. 6.Climate sensitivity estimated through weighting of the PMIP
models. Blue and cyan dots represent PMIP2 and CMIP5 simu-
lations respectively. Green curve shows prior distribution of cli-
mate sensitivity (based on equal weighting of the models). Thick
red curve shows posterior distribution, after weighting according to
match to the LGM tropical temperature. Thin red curves show the
individual models’ contributions to the posterior after weighting.
Vertical bars indicate 5, 50 and 95 percentiles.

issues is far from straightforward, so we make our choice
for reasons of practicality and in order to demonstrate the
utility of the overall method. A standard kernel density es-
timation based on the ensemble leads to the prior distribu-
tion presented as the green curve in Fig. 6, which has a 90 %
range of 1.7–4.9◦C and a median of 3.3◦C. The observa-
tionally derived estimate of tropical temperature gives rise to
the natural Gaussian likelihood functionL(M|O) =P(O|M)

from which the weights are calculated (whereO represents
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the reconstructed observations,M the model simulation,
L(M|O) the likelihood of the model result given the recon-
structed data, andP(O|M) the probability of the reconstruc-
tions assuming the models are correct). The posterior distri-
bution is shown in red, the bulk of which has been shifted
to lower values with the median reducing to 3.0◦C. Its 90 %
probability range has moved slightly less to 1.5–4.7◦C. The
reason for the upper limit here remaining high is that the
highest sensitivity model in the ensemble has been assigned
a fairly large weight since it matches the reconstruction well.
The small size of the ensemble means that this approach is
rather sensitive to the presence or absence of particular mod-
els in the ensemble.

These two approaches differ considerably in their use of
the model ensemble. In the latter case, the ensemble is di-
rectly used as a prior estimate, which therefore imposes quite
a strong constraint on climate sensitivity even before the ob-
servational constraints are used. The former method may
be considered as roughly equivalent to using a prior that
is uniform in the observed variable (here tropical tempera-
ture), although this approach is rarely presented in explicitly
Bayesian terms. Despite the different assumptions and ap-
proaches, these methods both generate similar estimates for
the climate sensitivity – both assigning higher probability to-
wards the lower end of the model range. The ranges are com-
parable with other palaeo-climate-derived estimates of 2.3–
4.8◦C (68 % confidence interval, PALAEOSENS Project
Members, 2012) but, given the small ensemble size and
possible naïvety of the assumptions made here, these esti-
mates may not be robust and need to be tested using a larger
ensemble.

4.3 Arctic Sea ice sensitivity constraints from the
mid-Holocene

The rate and pattern of Arctic sea ice change in future
decades is of interest due both to the surprisingly rapid
changes currently occurring and the large spread in model es-
timates in, for instance, the onset of summertime “ice-free”
conditions (Stroeve et al., 2012; Massonet et al., 2012). Re-
cent studies (Mahlstein and Knutti, 2012; Abe et al., 2011)
have demonstrated that biases in sea ice volume have a strong
impact on the simulated responses to radiative perturbations,
and that there may be a possibility to discriminate among
models based on interannual modes of sea ice variability.
The mid-Holocene simulations (driven mainly by changes in
orbital forcing) provide an orthogonal test of Arctic sea ice
sensitivity since MH insolation changes imply that NH sum-
mers were warmer than summers today (see Kutzbach, 1981
and many subsequent papers). Palaeo-data from the circum-
Arctic region indicates that this warmth was accompanied
by reductions in sea ice extent at least during some months
of the year (Dyke and Savelle, 2001; de Vernal et al., 2005;
McKay et al., 2008; Funder et al., 2011; Polyak et al., 2010;
Moros et al., 2006).
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Fig. 7.Sea-ice extent in CMIP5 models in 106 km2. (a) 30-yr mean
seasonal cycle for the period 1870–1900,(b) the anomaly in sea ice
extent for the period 2036–2065 in RCP 8.5, and(c) the anomaly at
the mid-Holocene.

The CMIP5 MH simulations (Fig. 7c) consistently show
decreases in sea ice extent from July/August through to
November relative to the pre-industrial. Changes in winter
months (December–February) do not agree in sign across the
models, though these changes are not well characterised in
the palaeo-data either. There is a relationship (Fig. 8) be-
tween the size of the anomaly at the MH and in future projec-
tions (using 2036–2065 in rcp85), presumably reflecting the
underlying sensitivity of the sea ice model and Arctic climate
in general (see also O’ishi and Abe-Ouchi, 2011). We focus
on the 30 yr period centered on 2050 since that is when there
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Fig. 9. Relationship between the September MH anomaly and the September RCP 8.5 anomaly

across the CMIP5 models.

831

Fig. 8. Relationship between the September RCP 8.8 anomaly (de-
rived from Fig. 7b) and the September MH anomaly (from Fig. 7c)
across the CMIP5 models.

is a very large spread in individual model projections in the
RCP 8.5 simulations (Fig. 7).

This correlation exists despite the variations in the cause
of the ice loss (summer insolation versus greenhouse-gas-
related forcing). Although the small size of the ensemble
raises questions about the robustness of the relationships, the
MH ice extent anomaly can be used to estimate the likely
loss in future projections. Given the qualitative nature of the
palaeo-data, we are not yet able to make a quantitative pro-
jection, but there is some support given to the models with
a larger projected change. A more detailed approach using
more specific and local diagnostics in comparison to a wider
proxy network will likely give a more quantitative result
(Tremblay et al., 2014).

5 Exploratory metrics: potential and limitations

While the examples given above show direct connections be-
tween past and future in ways that can be used relatively
straightforwardly, there are a number of reasons why other
diagnostics may not be as useful. In this section we provide
examples of where the palaeo-climate information has yet
to be explored, is ambiguous, or where connections seen in
palaeo-climate changes do not translate easily into the future
for some reason. This may be related to forcing ambiguities,
climate-change-related non-stationarity in climate/proxy re-
lationships, or potentially, a poor understanding or represen-
tation of the dominant processes. While these examples are
not directly informative about the future, they illustrate how
the palaeo-simulations can be explored in ways that illumi-
nate key uncertainties and, potentially, provide more oppor-
tunities in the future.

Section 5.1 focuses on the potential for shorter-term ex-
tremes in temperature and precipitation at the regional scale
to be predicted by large-scale seasonal anomalies. Sec-
tion 5.2 deals with the issue of the evaluation of models
over the historical period in the tropical Pacific using forward

models of coral-based proxies. Section 5.3 addresses diag-
nostics in the frequency domain that are strongly affected by
uncertainties in the forcing fields, rather than intrinsic prop-
erties of the models. Finally, Sect. 5.4 provides an example
of how connections between past and future hydroclimate di-
agnostics may be non-stationary.

5.1 Regional extremes

Extreme climate events such as heat waves and cold spells
can have long-lasting impacts on society or ecosystems
(IPCC SREX, 2012) and there have been analyses of the
impact of heat waves during recent centuries in Europe (Le
Roy Ladurie, 2004, 2006; Barriendos and Rodrigo, 2006;
Camuffo et al., 2010). The development of such events spans
days to a few weeks, so that they are largely intra-seasonal
by nature (Seneviratne et al., 2012). In such a context, the
generally linear relationship between palaeo-climate recon-
structions and actual climate can be strongly distorted. Since
extreme events are by definition rare, large numbers of ex-
amples are required to get good statistics. Simulations of
the past millennium offer a promising tool to investigate
modelled extremes since they sample a longer time series
and bigger range of possible cases than in most other sim-
ulations. The strongest limitation for an application of this
method to palaeoclimatic data has been the necessity of deal-
ing with daily data in order to resolve extreme value dis-
tributions (which may be non-Gaussian) and the need for
palaeo-archives that record extreme variables (e.g. Donnelly
and Woodruff, 2007). However, if we can demonstrate the ro-
bustness of the relationships between short and longer-term
statistics over long periods of time, and/or their dependence
on external forcings, we can potentially constrain the be-
haviour of temperature extremes in the future.

The statistical analyses of (daily) temperature hot ex-
tremes of the 20th century have shown that temperature is
generally a bounded variable, for which the upper bound
can be computed from the statistical parameters of extremes
(Parey et al., 2010a, b). Diagnostic studies focusing on the
probability distribution of temperature and precipitation ex-
tremes are often based on the application of Extreme Value
Theory (EVT), though simpler metrics have also been used
(e.g. Hansen et al., 2010). EVT describes the behaviour of
the probability distribution near the tails, and allows one to
estimate return periods for extremes that are longer than the
period of observation (Coles, 2001). It has been applied to
meteorological observations (Parey et al., 2010a), reanalysis
data (Nogaj et al., 2006) and model simulations (Kharin et
al., 2005, 2007) in order to estimate trends in extremes.

Extremes of hot and cold temperatures are correlated with
mean temperatures over the northern extra-tropics (Yiou et
al., 2009). Since very few models have archived daily outputs
of temperature or precipitation on multi-century timescales,
there has been no assessment of whether this is true over the
longer term (Jansen et al., 2007). However, daily resolution
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Fig. 9. Illustration of quantile regressions between the percentage of summer hot days (i.e. exceeding the 90th quantile of daily mean
temperature in June-July-August) in western Europe (10◦ W–30◦ E; 36–61◦ N) and the precipitation frequency anomaly with respect to the
1948–2011 mean in winter-spring (January to May). The precipitation frequency is computed over southern Europe (10◦ W–30◦ E; 36–
46◦ N) and is defined as the percentage of days with precipitation exceeding 0.5 mm. The quantile regressions are computed for the 10th and
90th quantiles of the hot day frequency, following Quesada et al. (2012). The red lines are for the 90th quantile regressions and the blue lines
are for the 10th quantile regression.(a) shows the quantile regression for western Europe from the updated EOBS data set (Haylock et al.,
2008) between 1950 and 2012 where each point represents a year.(b) is for the “historical” simulation (1960–2008) of the IPSL-CM5A-MR
model (Dufresne et al., 2013). Both panels show a widening of the quantile regression for low values of precipitation frequency, indicating a
consistency of the model simulation with observations.

data was requested for simulations in the CMIP5 archive
(Yiou et al., 2012).

Summer heat waves are generally preceded by droughts in
the winter and spring in extratropical regions (Fischer et al.,
2007; Vautard et al., 2007). The mechanism involves a pos-
itive feedback between sensible heat fluxes, evapotranspira-
tion and temperature (Schär et al., 1999), and this has also
been found in global and regional simulations of the future
(Seneviratne et al., 2006, 2010; Quesada et al., 2012). Quan-
tile regression provides a useful statistic metric to investigate
the linkage between precipitation in winter and spring and
summer temperature. Ordinary least-squares regression fo-
cuses on the mean values of related variables, but by setting
a threshold based on the upper/lower quantiles of the variable
to be predicted, regression coefficients related to the high (or
low) values of this variable are obtained (Koenker, 2005).
The purpose of quantile regression is to investigate the condi-
tional dependence between variables: for instance, the depen-
dence structure could be different for small and large predic-
tors. Hence, differences of slopes for small and high quantiles
show that the relation between the predictand and predictor
depends on the value of the predictor. An interesting feature
is that quantile regression is not very sensitive to outliers, be-
cause the regression is performed on the ranks rather than the
values themselves. We illustrate this diagnostic in Fig. 9, by
computing the quantile regression for 90th and 10th deciles
of the summer hot day frequency and winter-spring precipi-
tation frequency anomaly in the IPSL-CM5A-MR historical

simulation and the E-OBS gridded data set (Haylock et al.,
2008).

As in Quesada et al. (2012), the frequency of hot days is
defined by the percentage of days in western Europe (10◦ W–
30◦ E; 36–61◦ N) between June and August whose tempera-
ture anomaly exceeds the 90th quantile over a reference pe-
riod (1948–2011). The frequency of rainy days is the per-
centage of days in southwestern Europe (10◦ W–30◦ E; 36–
46◦ N) between January and May whose precipitation ex-
ceeds 0.5 mm. This is a simplistic index for soil moisture
(or drought) but it does have a significant predictive skill
to European summer temperature variations (Vautard et al.,
2007). More sophisticated indices of drought or soil mois-
ture marginally improve the predictive skill (Seneviratne and
Koster, 2012). In Fig. 9 the quantile regression slopes illus-
trate the asymmetry of the precipitation or temperature de-
pendence for hot or cool summers in western Europe (Hirschi
et al., 2011; Mueller and Seneviratne, 2012; Quesada et al.,
2012; Seneviratne and Koster, 2012).

The 90th and 10th quantile regression lines are not paral-
lel. Thus while the general picture is that a dry winter/spring
tends to favor a hot summer and wet winter-spring condi-
tions are generally followed by cool summers, dry winter-
spring conditions can be followed by cool summers as well
as heat waves (large spread between low and high quantiles).
This is due to the fact that the genesis of heat waves can be
broken in just a few days, due to fast variations of the syn-
optic atmospheric circulation (Hirschi et al., 2011; Quesada
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et al., 2012). This feature has been tested on CMIP3 and
some CMIP5 simulations for the present and future scenar-
ios and shows that the seasonal predictability of large Euro-
pean hot summers decreases under drier conditions in south-
ern Europe, although their frequency increases (Quesada et
al., 2012). By looking at the last millennium simulations we
will be able to examine the stability in time of these patterns,
and hence potentially constrain future changes.

5.2 20th-century changes in tropical Pacific climate

The response of the tropical Pacific Ocean to anthropogenic
climate change is uncertain, partly because we do not have
a good understanding of how the region has responded to
drivers in the past. Instrumentally based estimates of SST
over the 20th century are not internally consistent (Deser
et al., 2010), and model simulations have a wide spread of
20th-century trends (Thompson et al., 2011). Trends in the
tropical Pacific are particularly challenging because the in-
strumental record is sparse even for the early 20th century
and long-term in situ measurements of SST are uncommon.
High-resolution palaeo-climate records, particularly the large
network of tropical Pacific coralδ18Ocalcite records, can be
used to extend the observational record and assess long-
term trends. Theseδ18Ocalcite records respond to the com-
bined effects of SST and the isotopic composition of sea-
water (δ18Osw) (which is strongly correlated to sea surface
salinity, SSS) and can reveal changes on longer timescales.

To address the limitations of historical observations,
model simulations and coral proxy records in the tropical
Pacific, Thompson et al. (2011) used a forward-modelling
approach to generate synthetic coral records (i.e. pseudo-
corals) from observational and climate model output and test
whether these pseudo-corals are in agreement with the net-
work of coral δ18Oc observations. The forward model for
δ18Oc calculates isotopic variations as a function of SST and
SSS anomalies, with an SST-δ18Oc slope of−0.22 ‰◦C−1

and the SSS-δ18Osw slope varying by region (LeGrande and
Schmidt, 2006). When driven with historical SST and SSS
data, the simple model ofδ18Oc is able to capture the spatial
and temporal pattern of ENSO and the linear trend observed
in 23 Indo-Pacific coral records between 1958 and 1990
(Thompson et al., 2011). The observed trends were driven
primarily by warming at the coral sites, though SSS was re-
sponsible for approximately 40 % of the sharedδ18Oc trend.
However, pseudo-coral records calculated from CMIP3 and
CMIP5 historical simulations could not reproduce the mag-
nitude of the secular trend (Fig. 10, upper panel), the change
in mean state, or the change in ENSO-related variance ob-
served in the coral network from 1890 to 1990. While the
observational coral network suggests a reduction in ENSO-
related variance and an El Niño-like trend over the 20th cen-
tury, CMIP3 and CMIP5 simulations vary greatly on both
points.
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Fig. 10.Upper panel: magnitude of the trend inδ18Oc (‰/decade,
computed from a simple linear regression through the trend PC)
in corals (far left), Simple Ocean Data Assimilation (SODA)
20th-century reanalysis (Carton and Giese, 2008; Giese and Ray,
2011; Compo et al., 2011), a 500 yr control run from GFDL
CM2.1 (Wittenberg, 2009), and the CMIP3 and CMIP5 multi-
model ensembles. In each case,δ18Oc was modelled from SST and
SSS (1), SST only (2), and SSS (3). Lower Panel: magnitude of
the δ18Octrend (‰/decade, computed from a simple linear regres-
sion through the trend PC) over 1890–1990 in pseudocorals mod-
elled from CMIP5 historical simulations and over 2006–2100 in
the RCP 4.5 projections where numbers in parenthesis indicate the
number of runs in the historical and RCP 4.5 ensemble, respectively.

The differences between observed and GCM-derived
δ18Oc trends may stem from the simplicity of the forward
model for δ18Oc, bias in the coral records, and/or errors
in the GCM SST and SSS responses, or indicate an im-
portant role for unforced variability. Isotope-enabled cou-
pled control simulations highlight uncertainties in the SSS-
δ18Osw relationship and suggest that short-term isotope vari-
ability may play a minor role (Russon et al., 2013; Thompson
et al., 2013). Previous work has also highlighted potential
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biases in simulated salinity fields as a source of the discrep-
ancy (Thompson et al., 2011; 2013). For example, CMIP3
and CMIP5 simulations display weak and spatially heteroge-
neous SSS trends, such that the magnitude of theδ18Oc trend
in pseudo-corals simulated from CMIP3 and CMIP5 SSS is
indistinguishable from the trends observed in individual cen-
turies of an unforced control run (Fig. 10, upper panel). Fur-
ther, trends in mean state and ENSO-related variance within
the basin are highly variable among the CMIP5 models, and
even between ensemble members of the same model, and
much of this model spread may be attributed to differences
in the simulated SSS fields. On the other hand, while pseudo-
corals, modelled from the new SODA 20th-century reanaly-
sis of SST and SSS, display greater agreement with the ob-
served coral trends, two recent versions of this product dis-
agree regarding the relative contribution of SST and SSS.
These results suggest that more work is needed to constrain
the magnitude of the observed 20th-century salinity trend
throughout the tropical Pacific Ocean. This work provides an
example of the utility of forward models in investigating po-
tential biases in both the models and proxy data, which may
be used for further model development and exploration and
improvement of model metrics.

Despite the disagreement among models and runs regard-
ing the change over the 20th century, the CMIP5 projec-
tions converge upon a more El Niño-like (e.g. warmer eastern
equatorial Pacific) mean state change by 2100 under RCP 4.5
(with only one model suggesting the opposite), consistent
with the CMIP3 projections (Meehl et al., 2007). However,
the models still disagree about the change in ENSO-related
variance. Further, there is no clear relationship between the
magnitude of the simulated 20th-centuryδ18Oc trend and the
projected futureδ18Oc trend in the CMIP5 ensemble (Fig. 10,
lower panel). This suggests that an agreement of the simu-
lated 20th-century change in the tropical Pacific with that of
the observational coral network would not be a reliable indi-
cator of future trends. Nonetheless, this work highlights key
uncertainties in the observed and simulated salinity trends
within the basin and thus provides a basis for further devel-
opment of the models and this potential metric. More gener-
ally, it shows the utility of a forward modelling approach in
palaeo-model/data comparisons to highlight key functional
dependencies in specific proxies and investigate potential bi-
ases in both models and reconstructions.

5.3 Decadal to multi-decadal variability

In contrast to the spatial domain used in other examples here,
this section highlights two analyses in the frequency domain
that illustrate the important role of relatively uncertain forc-
ings in assessing skill in model simulations of decadal to
multi-decadal variability. Given the short instrumental pe-
riod, it might be hoped that longer time series from proxy
reconstructions for the last millennium could be used to

2 5 10 20 50 100 200 500

1e
−

04
1e

−
02

1e
+

00

Spectra of NH Land Surface Temperatures for the Last Millennium

Period (years)

S
pe

ct
ra

l d
en

si
ty

Forcing combinations

Control
Pnz+Crw+Vra
Pnz+Crw+Stn
Pnz+2xGao+Stn
Pnz+2xGao+Vra
Kap+Crw+Vra
Kap+2xGao+Vra
Pnz+no+Vra
Pnz+no+Stn
Ljundqvist 2010
Mann et al 2008
Moberg et al 2005

Fig. 11. Spectra from an ensemble of LM simulations using the
same model but driven with different sets of forcings compared with
Ljundqvist (2010), Mann et al. (2008) and Moberg et al. (2005) re-
constructions. The clustering of simulations is driven entirely by
changes in the volcanic forcing data set used, with the simulations
with the most decadal and multi-decadal variability using the Gao et
al. (2008) reconstruction. Only in the examples where no volcanic
forcing is used at all is the impact of different solar forcing recon-
structions detectable. Spectra derived using MEM with 30 poles,
from 850 to 2005, after correction for control run drift using a loess
low-frequency estimate derived from the control run. Key abbrevi-
ations: Land use: Pnz (Pongratz et al., 2008), Kap (Kaplan et al.,
2011); Solar: Vra (Vieira et al., 2011), Stn (Steinhilber et al., 2009);
Volcanic: 2xGao (twice the forcing from Gao et al., 2008), Crw
(Crowley and Unterman, 2013).

constrain internal variability, and hence the unforced spread
in projections over the next few decades.

In Fig. 11, we show the maximum-entropy method (MEM)
spectra (using 30 poles) for the NH mean land surface tem-
perature over 8 last millennium simulations (850–2005) with
the GISS-E2-R model that were run with different combi-
nations of plausible solar, volcanic and land use forcings
(Schmidt et al., 2011, 2012). The spectra are similar for
models that have the same volcanic forcing, and signifi-
cantly different when the volcanic forcing is derived from
a different data set or where no volcanic forcing was im-
posed at all. Specifically, interannual to multi-decadal vari-
ability is much larger when volcanoes are imposed, and
the larger the volcanic forcing, the greater the variability,
with the largest response in simulations using the Gao et
al. (2008) reconstruction (Gao), compared to the Crowley
and Unterman (2013) reconstruction (Crw). Note that the
implementation of the Gao et al. volcanic forcing in these
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simulations was misspecified and gave roughly twice the ex-
pected radiative forcing. However, given the uncertainties in
specifying volcanic forcing (for instance, associated with the
effective radius of the particles), the exercise is nonetheless
useful in highlighting the role of forcings in determining vari-
ance. In contrast, the difference between two different solar
forcings (Vieira et al., 2011; Steinhilber et al., 2009) is not
detectable in this metric.

The no-volcano simulations underestimate the
decadal/multi-decadal variance seen in two of the three
reconstructions, while the with-volcano simulations over-
estimate it. The lowest-frequency bands in the models
(primarily driven by orbital forcing, and the 20th century
anthropogenic trend) have slightly larger variance than in
the reconstructions.

Another analysis of variability as a function of timescale
is one focused on power law scaling (Lovejoy and Schertzer,
1986). Several scaling studies of GCMs demonstrate that
they generally simulate the statistics (including spectral
scaling exponents) reasonably well up to≈ 10 yr scales
(e.g. Fraedrich and Blender, 2003; Zhu et al., 2006; Rybski et
al., 2008; Lovejoy and Schertzer, 2013; Vyushin et al., 2012).
However, tests at lower frequencies are strongly affected by
the solar and volcanic forcings as well as the possible impacts
of slow processes such as deep ocean or land-ice dynamics
which are perhaps poorly represented or missing.

Following Lovejoy and Schertzer (2012a), we calculate
the root mean square (rms) fluctuation as a function of
timescale, from months to centuries, for the NH land tem-
peratures using the same eight runs of the GISS-E2-R model
used above, for the period 1500–1900 CE (Fig. 12). Since
simulations are strongly clustered according to changes in
the volcanic forcing used (Fig. 11), for simplicity we av-
eraged over the three Gao and three Crw volcanic and the
two no-volcanic runs. For comparison, we show the mean
of the same metric from three multiproxy reconstructions
(Huang et al., 2000; Moberg et al., 2005; Ljundqvist, 2010).
The multiproxy average is processed with and without the
20th century to indicate the importance of that period for the
scaling behaviour – in all cases the variance in the multi-
decadal to century scale is greatly enhanced by the recent
anthropogenic trend. These curves show fluctuations stable
with scale over the low frequency weather regime (years to
decades) but increasing in the climate regime (decades to
centuries) (Fig. 12).

The comparison with the GISS-E2-R simulations is illumi-
nating. First, we note that the slopes for the simulations show
decreasing variance from annual to centennial scale, in con-
trast to the reconstructions. Only the volcano-free runs (bot-
tom) clear have increasing variance with scale in the centen-
nial and longer periods, though with a magnitude of variance
at all scales that is too low. Volcanic forcings add variance at
all scales, but producing larger magnitudes that inferred from
the reconstructions.
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Fig. 12.rms fluctuations of instrumental and palaeo-climate recon-
structions compared to drift-corrected simulations of the Northern
Hemisphere land temperature for the period 1500–1900. 2xGao and
Crw refer to GISS-E2-R simulations using the (2x) Gao et al. (2008)
and Crowley and Unterman (2013) reconstructions of volcanic forc-
ing. The multiproxy reconstruction used is an average of three NH
estimates, and the rms fluctuations are separately shown for the pe-
riods 1000–1900 and 1000–1980.

Both these results demonstrate clear mismatches in be-
haviour between the models’ simulated variance at differ-
ent scales and the inferred variability from multi-proxy re-
constructions. However, there are strong sensitivities to the
(uncertain) external forcing functions, precluding a straight-
forward attribution of the mismatch to potentially misspeci-
fied forcings, missing mechanisms, insufficient “slow” vari-
ability or problems in the reconstructions. Specifically, re-
constructions may have frequency-dependent biases that vary
depending on the methodology and source data. For instance,
boreholes used in Huang et al. (2000) do not have high fre-
quency variability, while low frequency variability in tree-
ring-based reconstructions is hard to capture. In models, the
importance of decadal and multi-decadal variance in the Pa-
cific or Atlantic sectors vary widely and are poorly con-
strained from observations, and there may be significant is-
sues with the forcing functions themselves. Other analyses
(i.e. Schurer et al., 2013) have examined the coherence of last
millennium simulations and the proxy reconstructions and
found that while signatures of multiple forcings can be deter-
mined, there is a mismatch in the magnitude of the response
to volcanoes coherent with the conclusions drawn above. It
therefore remains unclear what implications these tests have
for future projections, but improvements in the forcing data
sets or a focus on more specific comparisons may prove fruit-
ful in future analyses.

www.clim-past.net/10/221/2014/ Clim. Past, 10, 221–250, 2014



242 G. A. Schmidt et al.: Using palaeo-climate comparisons to constrain future projections in CMIP5

5.4 Non-stationarity in hydroclimate diagnostics

Hydroclimate variability can be quantified using a range of
variables, including precipitation, soil moisture, lake levels,
or other synthetic indices (e.g. Nigam and Ruiz-Barradas,
2006). Most models provide output for these diagnostics, but
often these variables are not directly derivable from palaeo-
climate archives, creating a challenge when conducting
model-data comparisons. However, calibrations of networks
of precipitation-sensitive tree ring widths have been used
to reconstruct the Palmer Drought Severity Index (PDSI) in
North America and Asia over the Common Era (Cook et al.,
2004, 2010). PDSI is calculated using temperature-derived
estimates of the evapo-transpiration and precipitation, and
nominally represents a normalised index of soil moisture,
with negative values indicating drought and positive values
indicate wetter than normal conditions. There are many out-
standing issues with using variations of the index globally to
assess drought, in definition and availability and quality of
inputs and sensitivity (e.g. contrast Sheffield et al., 2012 and
Dai, 2013). However, we focus here on the question of how
well this index, if derived from GCM output, reflects sim-
ulated soil moisture and whether this relationship changes
over time.

From two GCMs (GISS-E2-R and MIROC-ESM), we cal-
culated PDSI using simulated temperature and precipitation
from the GISS-E2-R and MIROC-ESM models using the
Thornthwaite method. We compared this index against the
standardised (zero mean, unit standard deviation, over the
1850–1950 period, 10 yr smoothing) total column soil mois-
ture model output for the Central Plains of North America
(105–90◦ W; 32–48◦ W) (Fig. 13). Prior to the start of the in-
dustrial period in 1850, PDSI and soil moisture track each
other closely in both models (GISS-E2-R:r = 0.82; MIROC-
ESM: r = 0.50). Beginning near the middle of the twenti-
eth century, however, the two indices diverge dramatically.
In one model (GISS-E2-R) the correlation weakens consid-
erably (r = 0.33), while in the other model (MIROC-ESM)
the sign of the correlation reverses (r =−0.29). The PDSI
changes over the 21st century would suggest severe and un-
precedented drought. In contrast, the simulated soil moisture
trends indicate a more modest shift towards drying (GISS-
E2-R) or even wetter conditions over the coming decades
(MIROC-ESM). The divergence in projections is related to
the treatment of evapo-transpiration (ET) in the model versus
in the PDSI (Thornthwaite) calculation. In this PDSI calcula-
tion, temperature is used as a proxy for the energy available
while in the GCMs the soil energy and moisture budgets are
calculated directly using explicit physical models. In real-
ity, ET becomes increasingly decoupled from temperature as
the temperature increases, a factor reflected in the model soil
moisture but not in the PDSI index. For time periods with
strong transient changes in temperature (e.g. the late 20th
century and into the future), our analysis suggests that the
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Fig. 13. Standardised anomalies for PDSI and soil moisture in
two models (GISS-E2-R and MIROC-ESM) using a past1000 sim-
ulation, and a historical+rcp85 continuation. For reference, the
tree-ring-based reconstruction is plotted (dashed line) (Cook et al.,
2010), though this would not be expected to line up exactly with the
model simulations. All data smoothed with a 10 yr running mean.

usefulness of PDSI for projecting drought and hydroclimate
trends is limited.

While this example of a diagnostic divergence is specific
to the PDSI and soil moisture, there are wider implications
that might need to be explored in other metrics. It is not un-
usual for a proxy to have a non-stationary response to a cli-
mate variable of interest (see Sect. 5.2 for another example),
and it is incumbent on the investigator to ensure that any con-
sequences of this are fully explored.

6 Conclusions and recommendations

In this paper, we have focused on the opportunities provided
by “out-of-sample” palaeo-climate experiments within the
CMIP5 framework, and specifically how measures of skill
in modelling palaeo-climate change might inform future pro-
jections of climate change.

We have given examples that show that some relation-
ships are robust across the multi-model ensemble, over mul-
tiple simulations and in the palaeo-data (Sect. 3) and exam-
ples of skill measures that are well correlated with the simu-
lated magnitude of future change, thus allowing the likely
magnitude of future changes to be constrained (Sect. 4).
We also give examples of cases (Sect. 5) where there is
a need for caution because of the limitations with models,
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the experimental setup used in CMIP5, or with the palaeo-
climate data itself.

Our examples illustrate the general requirements for at-
tempts to use the palaeo-climate simulations to quantitatively
constrain future projections. Each example makes use of a
specific target (or targets) from a palaeo-climate reconstruc-
tion of change that is within the scope of the modelled sys-
tem, defines a metric of skill that quantifies the accuracy of
the modelled changes and assesses the connection to a fu-
ture prediction. The successes and problems discussed above
lead naturally to a set of guidelines that could profitably
guide future research for both modellers and the palaeo-data
community:

1. Palaeo-simulations need to be performed with models
that are also being used for future projections and pro-
duce model diagnostics that are commensurate in all
experiments (as in CMIP5).

2. The more extensive the structural uncertainty exam-
ined (across models, boundary conditions etc.) the
more robust any resulting constraints will be. Some
of our analyses (i.e. Sects. 4.1 and 4.2) are limited
by the small number of palaeo-simulations currently
available in the CMIP5 database, and we hope that the
demonstration of their potential to address questions
relevant to the future will encourage other modelling
groups to complete and archive these simulations.

3. Palaeo-data targets should be spatially representative
synthesis products with well-characterised uncertain-
ties. Our analyses rely heavily on the use of synthe-
sis data products, for instance the MARGO data set
for the LGM (MARGO, 2009), pollen-based recon-
structions for the mid-Holocene (Bartlein et al., 2011),
multi-proxy reconstructions of hemispheric tempera-
ture (e.g. Moberg et al., 2005), or gridded tree-ring-
based reconstructions of PDSI for the last millen-
nium (Cook et al., 2010). Such products are invalu-
able, but there is a need for increased transparency of
included uncertainties and continued expansion of tar-
gets (e.g. see Müller et al., 2011 for sea ice extent).
Increasing model complexity and scope, for instance
by including a carbon cycle, fire models or online trac-
ers such as water isotopes, necessitates the creation of
new synthesis products (e.g. charcoal records: Daniau
et al., 2012; or sea surface carbonate isotopes: Oppo et
al., 2007) if useful comparisons are to be made. Exam-
ples in Sects. 4.3 and 5.1 illustrate the need for more
efforts in this direction.

4. Skill metrics may be impacted by uncertainties in ex-
ternal forcing (and thus not solely characterise the real-
ism of modelled processes; as in the spectra generated
in Sect. 5.3), or may have non-stationary relationships
with impacts of interest (Sect. 5.4). Improved forward

modelling of palaeo-data (as in Sect. 5.2) will be in-
creasingly important.

5. Relationships between targets in the past and the future
predictions should be examined and not assumed. Not
all mismatches of palaeo-models and reconstructions
are related to factors important for future sensitivities,
and not all divergences in future projections are corre-
lated to differences in palaeo-climate skill.

The periods and hypotheses tested using palaeo-climate sim-
ulations are far more limited than the number of interesting
features in the palaeo-climate record. The three periods se-
lected for CMIP5 were chosen on the basis of their relative
maturity (the existence of prior sets of experiments, already
tested issues, existing data syntheses), but additional periods
are also potentially useful – the mid-Pliocene (2.5 million
years ago), the transient 8.2 ka event, the last interglacial,
the peak Eocene, etc. (see Schmidt, 2010 for justifications).
Some of these periods are already being examined in a coor-
dinated fashion (e.g. Haywood et al., 2013 and Dolan et al.,
2012 for the Pliocene), and we hope that more coordinated
experiments will be started. Further expansions of the model
experiments will lead to increases in the production of higher
frequency diagnostics (daily and sub-daily variations), and
include perturbed physics ensembles to better characterise
the model structural uncertainty. On the data side, much
greater efforts to create palaeo-data synthesis products with
robust uncertainty estimates are possible. All of these ex-
pansions will create possibilities for more and better tests of
model performance and hence potentially lead to better con-
straints on future projections. In the meantime, there is still
a huge untapped scope for more informative palaeo-model
comparisons that can be made using the existing databases.
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