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Abstract Large uncertainties in streamflow projections derived from downscaled climate projections of
precipitation and temperature can render such simulations of limited value for decision making in the con-
text of water resources management. New approaches are being sought to provide decision makers with
robust information in the face of such large uncertainties. We present an alternative approach that starts
with the stakeholder’s definition of vulnerable ranges for relevant hydrologic indicators. Then the modeled
system is analyzed to assess under what conditions these thresholds are exceeded. The space of possible
climates and land use combinations for a watershed is explored to isolate subspaces that lead to vulnerabil-
ity, while considering model parameter uncertainty in the analysis. We implement this concept using classi-
fication and regression trees (CART) that separate the input space of climate and land use change into
those combinations that lead to vulnerability and those that do not. We test our method in a Pennsylvania
watershed for nine ecological and water resources related streamflow indicators for which an increase in
temperature between 3�C and 6�C and change in precipitation between 217% and 19% is projected. Our
approach provides several new insights, for example, we show that even small decreases in precipitation
(�5%) combined with temperature increases greater than 2.5�C can push the mean annual runoff into a
slightly vulnerable regime. Using this impact and stakeholder driven strategy, we explore the decision-
relevant space more fully and provide information to the decision maker even if climate change projections
are ambiguous.

1. Introduction

Freshwater availability is essential for maintaining both the ecological and economic health of a region. We
need reliable projections of future streamflow under changing environmental conditions to guide long-
term water resources management and planning [Milly et al., 2002, 2008; Wagener et al., 2010]. The informa-
tion about future streamflow is required at the scale of regional planning [Barron, 2009]. However,
obtaining this information can be difficult due to large uncertainties in regional estimates of climate change
projections [Hall, 2007; Beven, 2011; Collins et al., 2012].

Common methods to estimate the impact of climate change on water resources include direct use of cli-
mate model output or the linking of general circulation models (GCMs) to hydrologic models via downscal-
ing [Xu et al., 2005]. The latter is the most widely used strategy to obtain projections of hydrologic variables.
Literature is abundant with studies that use downscaled GCM outputs as forcing for a hydrologic model to
derive projected hydrologic changes in a region [e.g., Maurer and Duffy, 2005; Kay et al., 2009; Manning
et al., 2009; Teng et al., 2012; Bennett et al., 2012]. In this study, we will call this modeling chain from GCMs
to hydrologic models the hydro-climatic framework (Figure 1a).

There are several challenges in using this hydro-climatic framework for estimating future streamflow. First,
there are large uncertainties in the streamflow output from the hydro-climatic framework that stem from a
range of sources [Paton et al., 2013]. To begin with, there is uncertainty due to the chosen emission scenario.
The further we project into the future, the more the projections from different emission scenarios separate.
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Second, GCM projections have large uncertainties (depending upon the region) mainly due to parameter-
ization of cloud physics, uncertainty in climate sensitivity, etc. The overlap in the underlying physics in these
models limits our ability to construct an ensemble of climate models that can reasonably estimate the prob-
ability distribution of climate projections, since they do not represent independent samples [Stephenson
et al., 2012; Knutti et al., 2013]. There are also significant uncertainties in the hydrologic model, including
model structural uncertainty and a dependence of the model parameters on the climate in the calibration
period [Merz et al., 2010; Singh et al., 2011, 2013]. A priori parameters can be used instead, but generally
exhibit large uncertainties if these are estimated [Kapangaziwiri et al., 2012]. Hence the traditional forward
propagation approach that integrates uncertainty from different sources may lead to biased or overconfi-
dent hydrologic projections that might be ineffective in aiding decision makers [Hall, 2007; Beven, 2011].

So while we generally assume that significant amount of uncertainties are present, we do not know the
actual amount and we often lack the ability to attribute the total estimated uncertainty to its sources (e.g.,
choice of GCM, downscaling, GCM parameters, etc.). The contribution of different sources of uncertainty to
the total uncertainty in streamflow projections depends on the study region, the hydrologic indicator con-
sidered, the hydrologic model used, etc. [Chen et al., 2011; Dobler et al., 2012; Teng et al., 2012; Bosshard
et al., 2013]. For example, Teng et al. [2012] find that streamflow projections are more uncertain for drier
regions within their study area in southeastern Australia. They also find that uncertainties in projections of
low flow characteristics are higher for regions that are likely to experience large declines in future rainfall.
Chen et al. [2011] also show that the relative contribution of uncertainty from different sources varies with
the hydrologic metric being evaluated. Dobler et al. [2012] show that even though GCM uncertainties domi-
nate hydrologic projections for most of the year, the uncertainty from hydrologic model parameters is
greater than uncertainty from GCMs during some winter months. These recent findings also challenge the
conclusions from earlier studies that the uncertainty arising from GCMs or downscaling methods often over-
shadows those originating from the choice of hydrologic model structure or hydrologic model parameters
[Wilby and Harris, 2006; Kay et al., 2009; Prudhomme and Davies, 2009a, 2009b].

While traditional forward propagation approaches (Figure 1a) may be used to gain understanding of possi-
ble changes in streamflow, decision makers do not always find this information helpful given that they can
often include projections that suggest both positive and negative changes in streamflow (mainly due to
precipitation). Recent studies have proposed alternative bottom-up or vulnerability-based approaches for
dealing with problems such as water management decisions under large projection uncertainties [Lempert
et al., 2008; Wilby and Dessai, 2010; Brown et al., 2011; Weaver et al., 2013]. In essence, these alternative para-
digms invert the problem by following a ‘‘bottom-up’’ approach as shown in Figure 1b. Here stakeholders
define vulnerability ranges for a particular decision variable, e.g., a specific hydrologic indicator, from the
outset. Then all combinations of climatic input and model parameters that cause the variable of interest to
transition into vulnerable regimes are identified through a modeling framework. Finally, the available
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Figure 1. (a) The hydro-climatic framework showing the traditional forward propagation approach used to derive future changes in hydro-
logic variables of interest and (b) the bottom-up approach used in this study, which starts by defining different (slightly vulnerable/vulner-
able/nonvulnerable, etc.) classes for a hydrologic indicator of interest and then identifying the regions in the input space that lead to each
class.
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information on future climate is integrated to assess the plausibility of the hydrologic indicator to transition
into a vulnerable regime in the future.

These bottom-up approaches are sometimes also termed decision scaling or context-first approaches. They
can be used in a wide variety of problems and have proved very useful for decision making when projec-
tions of the future are highly uncertain [Moody and Brown, 2013; Kunreuther et al., 2013]. Lempert et al.
[2008] describe two possible methods to identify vulnerable regions in the input space—patient rule induc-
tion method (PRIM) and classification and regression trees (CART). Neither of these methods is found to be
significantly superior to the other in Lempert et al. [2008]. However, PRIM is generally employed when the
output space is partitioned in two possibilities—vulnerable or nonvulnerable. Other example applications
of these alternative approaches include risk-based decision making to characterize contaminant plumes by
Boso et al. [2013], and the use of decision tree models for estimating the value of information provided by a
groundwater quality monitoring network by Khader et al. [2013].

In this study, we present a method based on this bottom-up paradigm that provides decision makers with
information about adverse thresholds in climate and land use change that may cause a hydrologic indicator
to transition to vulnerable regimes. These thresholds can directly be used to inform policy decisions even if
uncertainties in future climate projections are large. For example, if an indicator quickly transitions into vul-
nerable regimes (small changes in climate or land use causing vulnerability—low thresholds), it provides
the decision maker with the foresight that a very robust policy or drastic actions will be needed to avoid
potentially large damages. In this way, the information about thresholds in climate or land use obtained
can be combined with the available information on projected climate change (with small or large range of
uncertainties) to provide the decision maker with better insights into the nature of the hydrologic indicator,
its dominant controls, possible tipping points, feasibility of crossing those tipping points, etc.

The objective of our study is to implement and test a classification tree method centered on a vulnerability-
based approach for change assessment. We test our approach in the Lower Juniata watershed in Pennsylva-
nia located in the northeastern USA for nine different hydrologic (streamflow) indicators. We derive classifi-
cation trees for these indicators using a large range of possible climates, land uses, and hydrologic model
parameters. The large range of climates is generated by applying the delta change method to precipitation
and temperature time series to the historical period of 1948–1958. A vegetation parameter in the hydro-
logic model approximates the land use and uncertainty in the ranges for other hydrologic model parame-
ters is based on their a priori values derived from the watershed physical characteristics.

Using these classification trees, we demonstrate how our proposed method provides additional information
to a decision maker as compared to the standard approach by generating estimates of critical thresholds in
climate as well as an understanding of relative importance of climate and land use change within the
hydrologic modeling framework. For example, the available downscaled projections of climate from nine
general circulation models (GCMs) for the baseline (1990–2000) and end of century (2090–2100) time peri-
ods are used to navigate the classification tree to arrive at the future values of the indicators (e.g., mean
annual runoff) and assess the impact of changing climate on the hydrologic indicator. We then compare
the projections from the classification tree-based approach to those from the standard approach by driving
a historically calibrated hydrologic model using future projections of downscaled climate.

2. Methodology, Model, and Data

2.1. A Classification Tree-Based Strategy for Identifying Critical Climate and Land Use Change
Combinations
The main goal of our study is to establish the relationship between different possible climate and land use
changes in our study watershed and resulting streamflow indicator values (Figure 2). To achieve this goal,
we invert the problem through exploratory modeling. We start by defining a feasible space of climate and
land use changes. Land use is represented as a parameter representing the fraction of deep-rooted vegeta-
tion in the watershed—assuming that this is main aspect of vegetation that matters for the hydrologic indi-
cators studied here. Other processes and land use characteristics can be easily included. Different feasible
climates are generated using the delta change method in which only the mean of the climate variables
(precipitation and temperature) is changed keeping the higher moments fixed [Nash and Gleick, 1991; Jones
et al., 2006]. Following this definition of the feasible input space, we establish different classes for the
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hydrologic indicator of interest.
Here the stakeholder would nor-
mally be asked to provide their
definition of vulnerable ranges of
streamflow indicators. This could
for example be an ecologist who
defines critical values for a partic-
ular aquatic species, or a water
resources manager who has to
fulfill multiple competing
demands throughout the year.

In our study, we establish the fol-
lowing grouping to demonstrate
the methodology: if the value of
the selected indicator is within
historical variability, it falls in
Class 1, if it is only slightly above
historically observed values, it is
assigned Class 2, and extreme
increases are grouped in Class 6.
We develop similar classes for
values that are below the

observed historical variability. Each resultant value of the hydrologic indicator obtained from a particular
combination of climate and land use can then be assigned a class based on these class definitions. Even
though we start with a possible classification of hydrologic indicator space to demonstrate the method,
stakeholders can adjust this approach by defining their own vulnerability classes and identify how climate
or land use change will impact the indicators that most interest them. This will allow them to have an
understanding of not just the specific projections of streamflow based on climate model outputs but the
general behavior of their indicator. Using the mapping from input climate and land use space to output
indicator space, they can decide how robust the policy for dealing with future changes should be.

Using N climates and P parameter combinations, we derive N 3 P values of hydrologic indicators of interest
by driving the hydrologic model with these combinations and assign them to their specific class. Next, we
use the classification and regression tree (CART) to relate the climate and land use changes to the different
classes of the streamflow indicator. CART is a binary recursive partitioning algorithm that divides the input
space of multiple variables into subspaces, with each subspace related to a particular class of output vari-
able [Breiman et al., 1984]. At each stage, the tree partitions the space based on maximum gain in informa-
tion. Thus, through CART analysis, we can assess the critical changes in land use and climate required to
push the streamflow indicators into different regimes (represented by the indicator classes). Once we obtain
the information regarding the critical combinations in climate and land use, we can include the available
downscaled climate data into the analysis. Using the future projections of climate change derived from
downscaled GCMs, we can assess the plausibility of the hydrologic indicator to transition into a vulnerable
regime. Similarly, we could assess specific land use change scenarios for the study region.

2.2. Hydrologic Model
Figure 3 shows the hydrologic model structure used in this study adapted from the top-down modeling
framework by Bai et al. [2009] and Farmer et al. [2003]. The model has a spatially lumped parsimonious
model structure and is run at a daily time step. It comprises of a snow module followed by a soil moisture
accounting module and a routing module. There is possibility for recharge from the saturated soil store to
the deeper groundwater store. The soil moisture accounting module splits the soil into two layers—unsatu-
rated and saturated stores. The soil depth is modeled using a multiple bucket scheme based on the 10-
bucket Xinanjiang-model distribution [Zhao et al., 1980; Son and Sivapalan, 2007; Bai et al., 2009]. The multi-
ple buckets are filled and spilled in a parallel configuration.

Evapotranspiration is estimated by dividing the catchment surface into bare soil and deep-rooted vegetation
covered areas. The soil profile is divided into unsaturated and saturated zones. ET from the saturated zone is
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Figure 2. The exploratory modeling framework used in this study. We explore a space
spanned by N 3 P climate and hydrologic model parameter combinations. For this study,
N is a combination of 11 precipitation changes ranging from 250% to 150% in incre-
ments of 10% and 9 temperature changes ranging from 10�C to 18�C, resulting in 99
climates spanning the range of dry/hot to wet/cold climates. Number of parameter sets,
P is fixed at 10,000 randomly generated sets of hydrologic model parameters. Therefore,
in total, for each hydrologic indicator, we explored a combined space of 990,000 points.
We use classification and regression trees (CART) to relate the resultant streamflow indi-
cators from the N 3 P climate-parameter combinations to the classes defined on the
right-hand side.
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proportional to potential evapora-
tion and the soil moisture con-
tent. The saturated zone ET is
modeled similarly for both bare
soil and vegetation covered frac-
tions. The main difference in ET
arises within the unsaturated soil
store. In the unsaturated zone, the
fraction of the watershed covered
by bare soils evaporates at a rate
that is proportional to the soil
water content and to the poten-
tial evaporation. While in the case
of vegetation-covered soils, tran-
spiration from the unsaturated
stores is controlled by field
capacity parameter. If the soil
moisture content exceeds field
capacity, transpiration occurs at

potential rate. The basic formulation is adapted from Bai et al. [2009], with modifications for including phenol-
ogy and leaf area index from Sawicz [2013]. Equations are included in supporting information (Appendix A).

The growing behavior of vegetation, efficiency of water extraction from the soil, and variable canopy inter-
ception are included in the model to represent phenology in three ways. Above 10�C, water extraction by
vegetation is considered unimpeded and is set at its maximum capacity. Below 25�C, water extraction effi-
ciency is considered to have stopped so there is no evapotranspiration. Between these two ranges, a linear
relationship between extraction efficiency and temperature is assumed. The canopy interception is mod-
eled as maximum canopy interception during summer months and a minimum during winter months. A
sinusoidal function is used to describe the canopy interception for periods between summer and winter.
Details of model equations are provided in supporting information (Appendix A) and Table 2 lists the feasi-
ble range of parameters based on literature review.

2.3. Study Area: The Lower Juniata Watershed
The Lower Juniata watershed is located in the northeastern United States (Figure 4). The area of the
watershed is around 8686 km2, which encompasses roughly 12% of the area of the Susquehanna River
basin. Most of the watershed is covered by forests (�70%), followed by agriculture (�23%), and urban
land use (�7%) [Falcone et al., 2010]. Base flow index estimated from the hydrograph of the gauge

located at the Juniata River at
Newport, PA is around 0.70. The
base flow index is estimated
using a single pass filter by
Arnold et al. [1995]. Mean
annual precipitation (P) for the
period 1948–1958 is 1007 mm/
year and mean annual potential
evapotranspiration (PE) esti-
mated from the Hargreaves
equation [Hargreaves and
Samani, 1985] is around 1066
mm/year resulting in an aridity
index of around 1. The mean
annual flow (Q) for the period
1948–1958 is 444 mm/year
resulting in long-term runoff
ratio (Q/P) of 0.44.
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2.4. Data
The historical streamflow, temperature, and precipitation data are obtained from the MOPEX data set [Duan
et al., 2006]. The downscaled climate data used in the study are derived using the probabilistic downscaling
method by Ning et al. [2012a, 2012b]. Table 3 lists the number of global climate models (GCMs) used for
this analysis. We also use the data from Falcone database [Falcone et al., 2010] for obtaining watershed
properties such as land use, soil types, etc. to derive a priori ranges of hydrologic model parameters.

2.5. Classification and Regression Trees
Classification and regression tree (CART) is a recursive partitioning algorithms used to classify the space
defined by the input variables (here hydrologic model parameters and climate) based on the output vari-
able (here categorized hydrologic indicators) [Breiman et al., 1984]. In this study, we apply CART analysis
using the statistical CART package of R called ‘‘rpart’’ [Therneau and Atkinson, 2010]. This method automati-
cally provides a pruned tree after a tenfold cross validation and also provides estimates for the misclassifica-
tion error rates and cross-validation error rates for the classification trees developed.

The resulting tree consists of a series of nodes, where each node is a logical expression based on the values
of a hydrologic model parameter or a climate variable in the input space. If the expression is true, the left
branch is followed; otherwise, the right branch is followed. In this way, one can follow different combina-
tions of expressions (representing multidimensional subspaces of the input variables) to arrive at a terminal
leaf, which represents the output variable class with the highest probability. Since the classification is imper-
fect, the CART analysis also provides information on the probabilities of different output classes at each ter-
minal leaf node. The histograms of class distributions at each terminal leaf node visualize these
probabilities, thereby providing an assessment of the uncertainty associated with the classification.

3. Results

3.1. Obtaining A Priori Ranges for Hydrologic Model Parameters
We include parametric uncertainty in this analysis by obtaining a priori parameter ranges largely based on
physical watershed characteristics. This is achieved in two ways—relating the different components of the
hydrologic model with observed physical characteristics of the watershed from the Falcone database and
recession curve analysis of the historical streamflow data. Using this approach, a priori ranges are obtained
for 7 out of 12 parameters. For the remaining parameters, feasible ranges are obtained from literature
[Farmer et al., 2003; Van Werkhoven et al., 2008; Bai et al., 2009; Kollat et al., 2013]. The a priori ranges are
estimated for two recession parameters, two soil parameters and three vegetation parameters.

We derive a priori ranges for two parameters related to the soil module—soil depth and field capacity. Soil
depth is obtained based on the available depth to bedrock estimates, and porosity estimates of sand, silt,
and clay (all three are present in the watershed in significant amounts—50% silt, 30% sand, and 20% clay).
Field capacity parameter range is estimated as the range of the field capacity parameter across sand, silt,
and clay using the information on watershed average available water capacity, porosity, and permanent
wilting point ranges for sand, silt, and clay. Vegetation parameter is estimated from land use information
about the watershed [Falcone et al., 2010]. The percentage forest cover in the watershed is around 70%, so
the range of fraction of deep-rooted vegetation in the watershed is fixed between 0.6 and 0.8. Leaf area
index values are fixed between 0 and 6, since most the forests are deciduous in nature. Supporting informa-
tion Tables B1–B3 lists these calculations in details.

Two recession parameters are present in the model—recession coefficient 1 (Ass) for subsurface flow from
the saturated store and recession coefficient 2 (Abf) for base flow from the groundwater reservoir. These are
obtained from analyzing the recession behavior of the available streamflow time series. Since the model
does not route the surface flow, recession analysis is carried out only on base flow component of the total
streamflow, which is derived from the base flow filter [Arnold et al., 1995]. Two slopes are estimated for
each year across a 10 year time period. Recession coefficient 1, which represents the recession from satu-
rated store, is estimated as the average slope across the fast recession limbs (6–14 days). Recession coeffi-
cient 2, which represents the recession from the groundwater reservoir, is estimated by constructing a
master recession curve for the recession after removing the faster recession limbs (40–83 days). Figures B1
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and B2 show the estimation procedure of routing parameters as derived from the streamflow hydrographs
and Table 2 lists the ranges.

3.2. Climate Scenarios
The delta change method described in section 2.1 is used to generate climate change scenarios. The histori-
cal period of 1948–1958 is used as the base period and changes in temperature and precipitation are
applied on the climate time series for this period. The ranges for precipitation change explored are 250%
to 150% in steps of 10%. The ranges for temperature change are 0–8�C in steps of 1�C. Therefore, the total
number of climate combinations explored is 99. The adjustments to the climate data were made at daily
time steps with the precipitation values multiplied by a suitable fraction between 0.5 and 1.5 and the tem-
perature values increased by 0–8�C. To provide an estimate of how wide these ranges are—the IPCC 4th
assessment report [Christensen et al., 2007] suggests changes in precipitation between 23% and 15% and
temperature increase between 2.3�C and 5.6�C from 1980–1999 to 2080–2099 for Eastern United States
under the A1B emission scenario. It is important to note here that we use two different climate data in the
study—the climates generated from the delta change method are used to explore the feasible climate
space, whereas the downscaled climate data by Ning et al. [2012a, 2012b] are used once the (synthetic) cli-
mate and land use space has been related to the hydrologic indicator. The synthetic climate data are used
to explore the climate space and build the classification trees. The downscaled climate data are used to
assess the plausibility of the watershed to transition into a vulnerable regime in section 3.8 once the tree is
derived.

3.3. Defining Classes for Streamflow Indicators
In this study, we assume that we want to analyze the major controls on indicators representing aspects of
streamflow relevant for ecology as well as water availability for human abstractions such as power genera-
tion. Magnitude-related indicators such as mean annual runoff would determine average water availability.
Seasonal variability of water availability will be represented by indicators related to flow in months of high/
low flows. Olden and Poff [2003] describe several indicators that are ecologically relevant as well as repre-
sent water availability. Based on the insights provided by them, we include four categories of indicators in
our analysis (Table 1).

1. Magnitude-related indicators include mean annual runoff, minimum April flow, and maximum August
flow. As shown in Figure B3, August is a low-flow month for this watershed, and April is a high-flow month.
Therefore, flows for both months are included in the analysis.

2. Frequency-related indicators include low flow pulse count and flood frequency. These are important to
assess the recurrence of low/high-flow conditions in the watershed, which will be critical for in stream flora
and fauna.

3. Duration-related indicators include low flow pulse duration and high flow pulse duration. Low flow pulse
duration is particularly important since it assesses the number of days low flows will sustain in the water-
shed and is very important to assess water availability for power production during summer months.

Table 1. Definition of Hydrologic Indicators Analyzed in the Study Based on Olden and Poff [2003]

Hydrologic Indicator Category Definition Units

Mean annual runoff Magnitude Mean annual flow (normalized by catchment area) mm/year
Minimum April flow Magnitude—high Mean minimum monthly flow for April across time period of study mm/day
Maximum August flow Magnitude—low Mean maximum monthly flow for August across time period of study mm/day
Low flow pulse count Frequency—low Number of annual occurrences during which the magnitude of flow remains below a

lower threshold. Hydrologic pulses are defined as those periods within a year in
which the flow drops below 25th percentile of all daily values for the time period

Flood frequency Frequency—high Same as above where high pulse is defined as three times the median daily flow
Low flow pulse duration Duration—low Mean duration of low flow pulses defined above days
High flow pulse duration Duration—high Mean duration of high flow pulses with high flow cutoff at 75th percentile of the daily

flows of the entire record
days

Seasonal predictability
of nonflooding

Timing of change Maximum proportion the year (number of days/365) during which no floods have
ever occurred over the period of record. Floods are defined as flow values greater
than or equal to flows with 60% exceedance probability (1.67 year return interval)

Reversals Rate of change Number of negative and positive changes in water conditions from one day to the
next
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4. Indicators describing the timing and rate of change of streamflow include seasonal predictability of
nonflooding and reversals.

We define classes for each indicator as shown in the example illustrated in Figure 5. These class definitions
are fixed across all indicators. The range of indicator values for each class is estimated using the standard
deviation calculated from the historical data. A 10 year running window from 1948 to 2002 is used to esti-
mate 45 values for each indicator. We find that a range of 4r, where r is the standard deviation of the indi-
cator values in the running window between 1948 and 2002, is sufficient to cover all indicator values in
most cases. Therefore, the width of each class is fixed at 4r. The different indicator classes are defined using
the mean (m) and standard deviation (r) from the historical period as follows:

1. Class 1—Historical range: l 2 2r<Value< l 1 2r

2. Class 2—Slightly higher than historical range: l 1 4r< Value< l 1 8r

3. Class 3—Much higher than historical range: l 1 8r< Value<l 1 12r

4. Class 4—Slightly lower than historical range: l 2 4r< Value< l 2 8r

5. Class 5—Much lower than historical range: l 2 8r< Value<l 2 12r

6. Class 6—Extremely high ranges: l 1 12r<Value

7. Class 7—Extremely low ranges: Value<l 2 12r

If the lower limit of a class is falls below zero, it is set equal to zero and the remaining classes below this
limit are eliminated.

3.4. Classification Results for Changing Climate and Fixed Land Use
Ten thousand random parameter sets are generated from the a priori parameter ranges in Table 2 using
Latin Hypercube sampling. Based on the method described in Figure 2, we drive the hydrologic model
with 99 climates and 10,000 parameter combinations to estimate the value of streamflow indicator for
each combination. In this way, we end up with 990,000 values for each indicator across a broad range of
climates, land use (represented by the fraction of deep-rooted vegetation parameter) and watershed
properties (represented by the range of a priori parameter sets). After this, we assign each indicator value
a class based on whether it falls within the range of historical variability or outside it, as described in sec-
tion 3.3. Then classification and regression trees (CART) are used to relate the different classes of indica-
tors (output variable) with input climate and parameter space (input variables). The data on
misclassification and cross-validation rates for the classification trees derived in this study are included in
supporting information (Appendix C). Here we will focus our analysis of three selected indicators to show
the application of the method, the classification trees for the remaining indicators are included in sup-
porting information (Appendix C)
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1. Mean annual runoff: This indicator represents general water availability

2. Maximum August flow: August is a month of low flows and this indicator suggests the condition of low
flows

3. Flood frequency: Indicates the condition of high flows.

We start with the controls on flood frequency for the case of changing climates but fixed land use. In this
case, the fraction of deep-rooted vegetation is fixed at the historical range. Figure 6a shows the different
class assignments based on historical variability of flood frequency derived from streamflow data. Class defi-
nitions have been provided in section 3.3. Here we assume that an increase (shown by yellow and shades
of red) in the value of the flood frequency will lead to vulnerability since that corresponds to the watershed
experiencing high floods more frequently, a decrease is assumed to have uncertain impacts (shown by
shades of green).

Figure 6b shows the classification tree for flood frequency for fixed land use but changing climates. The
tree consists of many nodes, each of which is a logical expression. If the expression is true, the left branch is
followed, otherwise the right one. In this manner, by navigating different subspaces of climate and parame-
ters, we reach a ‘‘terminal’’ node or a leaf. At the leaf, the indicator class that results from the combination
of different logical expressions is shown. From the tree in Figure 6b, we find that the primary control on this
indicator is precipitation (shown as Pratio—the ratio of mean annual precipitation in the future to historical
mean annual precipitation) followed by the recession coefficient describing the recession from the subsur-
face soil moisture store (Ass). The maximum height of soil moisture storage (Sb) is the third control. This
suggests that frequency of high floods depends first upon the climate of the watershed followed by its abil-
ity to release water from the subsurface and amount of water that can be stored in the subsurface.

We also show the class probabilities associated with the classes 1–7. This gives an indication of how ‘‘pure’’
a terminal node is. If all the indicator values based on navigating a set of logical expressions resulted in a
single class, the probability distribution will be skewed toward that class. On the other extreme, if the classi-
fication algorithm is unable to relate the indicators class with specific regions in the input variables space,
the node will be highly impure, or the probability distribution across classes 1–7 will be nearly flat. Most of
the times the probability distribution are in the middle of these two extremes suggesting there is always
some uncertainty in threshold values of climate and parameters selected by the classification algorithm.

Using Figure 6b, one can also identify the different pathways that lead to vulnerability of the indicator as
shown by solid black lines. Even for small rises in mean annual precipitation (increase of 5% from historical
value) the indicator can transition to different dominant controls. In this case, if the mean annual

Table 2. Feasible and A Priori Ranges of the Hydrologic Model Parameters

Description

Feasible Range Reduced A Priori Rangea

UnitsLower Upper Lower Upper

Soil Sb Max height of soil store 0 2000b 290 810 mm
B Distribution of buckets 0 7b

FC Field capacity parameter 0 1 0.22 0.43
Kd 0 0.5c

Vegetation %Veg Deep-rooted vegetation 0 1 0.6 0.8
LAImax Maximum leaf area index 0 6 0 6 mm
LAImin Minimum leaf area index 0 6 0 6 mm

Routing ASS Recession coefficient for
saturated soil

1 20d 6 14 days

ABF Recession coefficient for
groundwater

20 200d 40 83 days

Snow Ddf Degree day factor 0 20b mm �C21 d21

Tth Threshold temperature for
snow formation

25 5b �C

Tb Base temperature for melt 25 5b �C

aSupporting information (Appendix B) and section 3.1. Upper limit of FC was further reduced as FC >0.43 did not produce realistic flows for the observed hydrograph.
bKollat et al. [2013].
cFarmer et al. [2003].
dBai et al. [2009].
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precipitation is greater than 0.95
times the historical value, the
indicator’s classes are controlled
by the recession coefficient, Ass
and maximum height of soil
moisture storage, Sb. If not, fur-
ther changes in mean annual
precipitation control the indica-
tor values. Following the left
branch of the classification tree,
we find that if mean annual pre-
cipitation changes remain within
0.95–1.15 times the historical
value, the most likely values of
flood frequency fall into Class 1,
i.e., the indicator remains within
historical variability. On the other
hand as mean annual precipita-
tion rises beyond 1.15 times its
historical value, model parame-
ters emerge as significant con-
trols on the classes for the
indicator. It is worth pointing out
that even though temperature is
varied across a wide range in this
analysis (0–8�C), it does not show
up at all as a dominant control
for flood frequency.

We can conclude from this tree
that if the watershed witnesses
an increase in precipitation, both
the amount of increase and other
watershed properties will govern
the future values for flood fre-
quency. On the other hand, if the
watershed transitions into

decreasing precipitation regimes, precipitation itself will be the dominating control on this indicator. Using
available data on future climate projections and historical streamflow, we can further assess the plausibility
of the different paths as discussed in sections 3.7 and 3.8.

Instead of using class widths as 4r as described in section 3.3, if we use 6r as the width of each class, the
resultant tree is shown in Figure 6c. For the flood frequency indicator, if the thresholds are shifted to larger
limits, it does not impact the dominant patterns in the classification tree. Precipitation is still the major con-
trol and its thresholds remain consistent between Figures 6b and 6c. Similarly, recession coefficient Ass also
remains an important control and its thresholds are the same between the two classification trees. The
changes are found at lower levels of the tree—absence of Sb (maximum height of soil moisture storage),
addition of temperature as a control and a slight modification of threshold of Pratio from 0.85 in Figure 6b
to 0.75 in Figure 6c. Sine the class widths are defined to be wider in Figure 6c, larger changes in precipita-
tion are now required to shift the regimes of the hydrologic indicator. As before, even small changes in pre-
cipitation (5%) can lead to a shift in dominant controls.

3.5. Combined Impact of Climate and Land Use Change on Streamflow Indicators
We estimate the combined impact of climate and land use change by allowing the fraction of deep-rooted
vegetation to vary from 0 to 1, representing no forest cover to full forest cover in the watershed. We com-
pare the case of fixed and varying land use for two indicators—maximum August flows and mean annual
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flows as shown in Figure 7. Figure 7 (left) shows the classification tree for changing climate and fixed land
use, Figure 7 (right) shows the classification trees for varying both climate and land use in the watershed.
The impact of changing land use varies across the two indicators—mean annual runoff in Figure 7a and
maximum August flow in Figure 7b. Several interesting patterns are discovered

1. Type I impact—A decrease in fraction of deep-rooted vegetation cover increases the odds for the mean
annual runoff to transition to higher values (Figure 7a). Also once the fraction of deep-rooted vegetation is
allowed to vary from 0 to 1, land use becomes the second most dominant control on mean annual runoff.
However, if the fraction of deep-rooted vegetation is fixed in the historical range, temperature is the second
most dominant control. In general, we find that a small deep-rooted vegetation cover corresponds to high
values of mean annual flow. For example, Figure 7a(right) shows that for a 25% increase in mean annual
precipitation, the mean annual runoff always belongs to class C3 when the percentage deep-rooted vegeta-
tion less than 36%. But when this percentage is allowed to be greater than 36%, the indicator can belong
either to Class 1 or in Class 2 based on the values of temperature and climate change.

Our results agree with Frans et al. [2013] who show a 5% increase in runoff when forests (deep-rooted vege-
tation) are replaced by croplands (shallow rooted) in the upper Mississippi river basin. Similarly, we find that
a decrease in percentage of deep-rooted vegetation leads to a higher chances of the mean annual runoff
belonging to class 3. Another way of interpreting this result is that for a given climatic regime in a
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watershed, the input precipitation (P) is partitioned into green (ET) and blue water (Q) on the basis of extent
of deep-rooted vegetation cover. So an increase in one will logically lead to a decrease in other.

2. Type II impact—A high fraction of deep-rooted vegetation cover is the only way some indicators can
maintain their historically observed ranges. Maximum August flows would be much higher (belonging to
classes 2, or class 5) than its historically observed range (Class 1) if the percentage of deep-rooted vegeta-
tion in the watershed decreased beyond 32% (Figure 7b, right).

3. Type III impact—Deep-rooted vegetation cover interacts with climate to generate different possible states
for the watershed. For example, keeping the percentage of deep-rooted vegetation in the watershed above
43% may prevent extreme increases in maximum August flows. If the vegetation falls below 44% the maxi-
mum August flows will always belong to class 5 (Figure 7b, right). The classification trees for combined cli-
mate and land use change show how these two types of changes interact with each other to generate
different regimes for a hydrologic indicator.

In general, we find that until deep-rooted vegetation in the watershed falls below 50%, it will not become a
major factor on controlling the different hydrologic indicators since the split values in logical expressions
for fraction of deep-rooted vegetation picked by CART is less than 50% in almost all cases. On the other
hand, even small changes in precipitation (�5%) significantly impact the dominant controls on the indica-
tor. For the classification trees showing the impact of deep-rooted vegetation for other hydrologic indica-
tors, see supporting information (Appendix C, Figures C1–C6).

3.6. Dominant Controls for All Hydrologic Indicators
Figure 8 summarizes the different controls on the nine hydrologic indicators analyzed in this study. We
assess the importance of different controls for each indicator by using its classification tree. The input vari-
able (climate or hydrologic model parameter) that forms the first split in the tree is assigned maximum
importance because among all input variables it is the one that can classify the output space most effec-
tively (maximum gain in information). In this manner, based on the location of different input variables in
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(%Veg), soil parameters and recession (routing) parameters for (a) feasible parameter range, (b) a priori parameter range with fraction of
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the tree, we assign them a relative importance. This assignment is depicted by different shades of gray and
is shown in the legend in Figure 8. We show these controls for three cases—when parameters vary across
their entire feasible range, parameters are fixed at their a priori ranges, all parameters except the fraction of
deep-rooted vegetation cover are fixed at their a priori ranges (the case of varying land use).

We observe that the controls vary across indicators. Across the entire feasible ranges of parameters, for
magnitude-related indicators, climate is the primary control, soil parameters are the secondary control and
vegetation together with recession (or routing) parameters are tertiary controls. The recession parameters
are not important at all for two out of three magnitude-related indicators. For flood frequency, climate and
soil parameters are dominant, whereas recession parameters are most important for low flow pulse count.
For low flow pulse duration, precipitation is the dominant control followed by soil, vegetation, and reces-
sion parameters. On the other hand, high flow pulse duration is mainly governed by the recession parame-
ters; climate has a secondary effect and vegetation with soil parameters have a tertiary effect. For rate of
change indicator (reversals), soil parameters are the important controls followed by vegetation and climate.
No statistically significant trees are obtained for seasonal predictability of nonflooding in the case of feasible
parameter ranges.

When we reduce the feasible space to a priori ranges of hydrologic model parameters based on watershed
physical properties, temperature shows up as an important secondary control for two out of three
magnitude-related indicators. For magnitude-related indicators, climate is the dominant control with both
precipitation and temperature being present in the classification tree. For monthly flows (minimum April
and maximum August), soil parameters also have tertiary importance. For low flow pulse count, climate and
soil parameters (deep recharge coefficient and soil shape parameter) are important. For flood frequency, cli-
mate is the primary control (also seen in detail in Figure 6) followed by recession and soil parameters. For
duration-related indicators too, climate followed by recession and soil parameters are the main controls.
The controls for rate of change (reversal) are similar as the case of feasible space with climate becoming the
most important in restricted parameter space. The predictability of nonflooding is governed mainly by soil
parameters followed by climate. However, this tree has a very skewed distribution with most of the indica-
tor values belonging to the historical class (root node in Figure C5) and therefore the classification is not
reliable. Once we allow the fraction of deep-rooted vegetation in the watershed to vary from 0 to 1 (the
case of changing percentage vegetation), land use turns out to be the secondary control across all indica-
tors. It is particularly important for low flow pulse count, low flow pulse duration, timing and rate-related
indicators.

3.7. Impact of Parametric Uncertainty When Navigating the Classification Trees
In order to ascertain which path in a classification tree the watershed will follow, we need estimates of
model parameters. Figure 9a shows classification tree for flood frequency (section 3.4 and Figure 6) based
on a range of climates, fraction of deep-rooted vegetation fixed at historical ranges, and a priori ranges of
parameters. A further reduced range of values for important parameters selected on the basis of calibration
are shown in Figure 9b. Out of 10,000 parameter sets generated using uniform random sampling, 19 param-
eter sets satisfying Nash-Sutcliffe Efficiency (N.S.E)> 0.75 on Box-Cox transformed flows (using a Box-Cox
parameter value of 0.3) and absolute bias error< 10% are chosen to represent the range of parametric
uncertainty [Nash and Sutcliffe, 1970; Brazil, 1988; Kottegoda and Rosso, 1997]. The Nash-Sutcliffe Efficiency
was estimated for daily time steps and the absolute bias error was estimated as the difference between
total runoff simulated and observed across the 10 year period.

Even across a relatively small set of high performing parameter sets, the ranges of parameters are high.
High parametric uncertainty blurs the differentiation between the plausibility of different paths. We find
that high uncertainty in recession coefficient, Ass, leads to two paths being feasible while analyzing the
region of space with increases in precipitation beyond 15% of the historical value. This indicates the need
for reducing these uncertainties in order to decrease the range of possible futures. The tree also demon-
strates how uncertainties in climate and parameters interact with each other in a complex manner. Even if
we know for certain the future climate, existing parameter uncertainties makes the projection of future
regime of indicator uncertain.

We generally do not observe such an impact of hydrologic model parameters on estimates of hydrologic
indicators in other studies since they focus mainly on magnitude-related indicators. In this study too, the
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magnitude-related indicators (such as mean annual runoff) are mainly dependent on the climate of the
watershed (Figure 8, the case of a priori parameter ranges). Even when studies explore different indicators
they only vary the analysis between high and low flow magnitude indicators. But if we move beyond
magnitude-related indicators toward frequency-related and duration-related indicators, the hydrologic
model parameter uncertainty becomes much more important as seen in the example provided in Figure 9.

3.8. Comparing Top-Down With Bottom-Up Approach
Finally, we compare the traditional top-down approach for deriving streamflow projections to the bottom-
up approach used in this study. We derive the future values for different indicators using projections of
future climate based on a statistically downscaled ensemble. We obtained future climate information from
9 GCMs (Table 3) and 1500 realizations per GCM based on the method in Ning et al. [2012a, 2012b]. We use
19 parameter sets that satisfy a bias error< 10% and N.S.E> 0.75 on Box-Cox transformed flows. This repre-
sents the classical calibration-based approach. Figure 10a shows the ranges for change in precipitation and
temperature based on downscaled climate data, Figure 10b shows the classification tree for mean annual
runoff derived from climates generated by delta-change method, and Figure 10c shows the future projec-
tions of streamflow obtained by the tradition top-down approach. By using the range of future precipitation
and temperature change from downscaled climate data in Figure 10a, we can assess projected future
streamflow from the classification tree in Figure 10b by following the branches of the tree that represent
temperature change between 3�C and 6�C and precipitation change between 0.83 and 1.19 times the his-
torical mean annual precipitation. On comparing the projections of streamflow in Figure 10c with those
from the CART analysis in Figure 10b, we find that both analyses project future mean annual runoff to be

Table 3. List of General Circulation Models (GCMs) That Are Used for Statistically Downscaling the Precipitation and Temperature Dataa

No Abbreviation CMIP3 I.D. Origination Group Country

1 CGCM3.1 CGCM3.1 (T47) Canadian Centre for Climate Modelling and Analysis Canada
2 CM3 CNRM-CM3 M�et�eo-France/Centre National de Recherches M�et�eorolgiques France
3 MK3.0 CSIRO-MK3.0 CSIRO Atmospheric Research Australia
4 CM2.0 GFDL-2.0 US Department of Commerce/NOAA/Geophysical Fluid

Dynamics Laboratory
USA

5 GISS GISS-ER NASA/Goddard Institute for Space Studies USA
6 CM4 IPSL-CM4 Institute Pierre Simon Laplace France
7 ECHOG ECHO-G Meteorological Institute of the University of Bonn, Meteorological

Research Institute of KMA, and Model and Data group
Germany and

Korea
8 ECHAM5 ECHAM5/MPI-OM Max Planck Institute of Meteorology Germany
9 CGCM2.3.2a MRI-CGCM2.3.2a Meteorological Research Institute Japan

aThe data are downscaled for baseline (1961–2000) and end of century (2081–2100) for A2 emission scenario.
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either within the historical range or to decrease (Class 4). However, CART analysis provides additional infor-
mation about the thresholds in climate, which the traditional top-down approach does not. For example,
following the left most branch of the tree in Figure 10b, we find that a temperature change greater than
2.5�C will keep the future streamflow within the historical range (Class C1) even if precipitation increases
between 25% and 35%.

We can also visualize all the combinations of input climate and parameters that lead to a particular class of
hydrologic indicator using high-dimensional data visualization. An example for mean annual runoff is
shown in Figure 11. The results are plotted as parallel coordinate plots with the normalized values for all
parameters and climate change ranges. The temperature increase is normalized between 0�C and 8�C, and
the precipitation change is normalized between 0.5 and 1.5 times the historical precipitation. Other parame-
ters are normalized according to a priori ranges of model parameters.

Figure 11 shows that only precipitation and temperature are the main controls on mean annual runoff, with
precipitation being primary and temperature being a secondary control. We find that only low values of
temperature increases can lead to mean annual runoff transitioning to Class 3 as seen from the skewed dis-
tribution in temperature change for the subplot showing Class 3 (green). Note that the classification tree
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Figure 10. (a) Future ranges for precipitation and temperature change based on downscaled climate data. Precipitation change (Pratio) is
expressed as the ratio of mean annual precipitation for end of century (2090–2100) projections to mean annual precipitation in the base-
line (1990–2000) period. Temperature change (DT) is expressed as the difference between mean annual temperatures for end of century
(2090–2100) projections to mean annual temperature in the baseline (1990–2000) period. (b) Classification tree for mean annual runoff.
The black lines in Figure 10b represent the future classes for mean annual streamflow derived from navigating the classification tree in Fig-
ure 10b using precipitation and temperature changes in Figure 10a. (c) Projections of streamflow obtained by the traditional top-down
approach by driving the hydrologic model directly with the future precipitation and temperature time series. Nineteen parameter sets
fixed at their historically calibrated values are used. We compare the projections of mean annual streamflow derived from the bottom-up
CART analysis in Figure 10b to those derived directly from the top-down method using statistically downscaled GCM output in Figure 10c.
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does not provide much information about the climate combinations that lead to Class 3—there is no node
in Figure 10b that results in C3. Visualization such as those in Figure 11 can be further used to explore such
classes that do not emerge as prominently in the classification tree. Figure 11 suggests that if the tempera-
ture increases beyond 2–3�C, no matter how high the precipitation increase will be, streamflow is not likely
to be as high as the ranges in Class 3. On the other hand, large decreases in precipitation always result in
extremely low streamflow values (C5) despite constant or increasing temperature. Therefore, we find that
the sensitivity of streamflow to temperature changes is a function of precipitation change. Streamflow is
very sensitive to temperature change when precipitation increases by amounts (25–35%) and relatively
insensitive to temperature change if precipitation decreases beyond 235% of the historical value.

4. Discussion

We find that critical thresholds for climate and land use change vary across indicators. For example, small
decreases in precipitation (�25%) combined with temperature increases greater than 2.5�C can cause
mean annual runoff to transition into a slightly vulnerable regime. The mean annual runoff remains within
historical variability when either the precipitation change remains between 25% and 15% and temperature
increases are less than 2.5�C, or temperature increases beyond 2.5�C and precipitation increases between
25% and 35%. Even for other frequency/duration indicators like low flow pulse duration, small decreases in
mean annual precipitation (>5%) can shift its values outside historical variability (Figure C3).

We also find interesting interactions between climate and land use change in the watershed. Deep-rooted
vegetation cover plays a dual role in the hydrology of a watershed—it makes low flow conditions more
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Figure 11. Visualizing 200 randomly selected parameters and climate combinations that lead to Classes 1–5 for mean annual runoff. The
horizontal bar plots on each subplot is the histogram for that particular parameter/climate variable. We find that precipitation and temper-
ature changes mainly control the mean annual runoff. Fraction of deep-rooted vegetation (%Veg) is fixed at the historical values in this
plot, therefore does not emerge as an important influence. DT and DP are mean annual precipitation and temperature changes. Ddf to
Abf are the hydrologic model parameters whose ranges are fixed at the a priori range.
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severe due to larger evapotranspiration, but also mediates the impacts of high flows. For example, the clas-
sification tree showing the controls on low flow pulse duration with varying fraction of deep-rooted vegeta-
tion (Figure C3, bottom) illustrates that for all cases of mean annual precipitation decreases between 235%
and 215% of the historical value, and percentages of deep-rooted vegetation less than 36%, the indicator
has high probability of belonging to the slightly vulnerable class—Class C2. But for the same range of mean
annual precipitation, if the percentage of deep-rooted vegetation is greater than 36%, the indicator has
higher chances of belonging to much higher vulnerability classes—C3 and C6. So an increase in percentage
of deep-rooted vegetation leads to increased chances of persistence of low flow conditions in the stream.
This is similar to a recent observation from four headwater catchments in central and Western Europe by
Teuling et al. [2013], where they find that evapotranspiration intensified the summer drought in these
catchments.

In another example, the case of mean annual runoff in Figure 7a (case of combined climate and land use
change), we find that for increases in mean annual precipitation greater than 25%, the likelihood of the
mean annual runoff belonging to extremely high values (Class C3) is greatest if the percentage of deep-
rooted vegetation in the watershed is less than 36%. If the percentage of vegetation is greater than 36%,
depending on particular climate and temperature changes, the indicator values may fall in the historically
observed ranges or be slightly higher than historically observed values (Class C1 or C2).

5. Conclusions

In this study, we develop a vulnerability-based approach to quantify the impact of climate and land use
change on several streamflow indicators while considering hydrologic model parameter uncertainty. We
explore a large space of climates, land uses and hydrologic model parameters, in order to understand their
relative control on selected streamflow indicators, and find that different controls emerge across indicators.
We also find that the sensitivity of streamflow to temperature and precipitation change depends upon the
magnitude of the precipitation change itself. For example, the values of mean annual runoff are relatively
insensitive to temperature change if mean annual precipitation decreases beyond 235% of the historical
value. The classification trees produced demonstrate that climate, soils, vegetation, and geomorphology
(recession) come together in a complex manner to generate different streamflow regimes and characteris-
tics. For each indicator, the different branches of the tree represent different states for the watershed result-
ing from combinations of climate and physical characteristics.

There are three possible ways in which the bottom-up approach can assist the decision maker. First, the
detection of dominant controls on a hydrologic indicator helps the stakeholder to assess where investments
should be made to attempt to reduce uncertainties. For example, it is clear from the classification tree of
mean annual runoff that the reduction in uncertainty associated with future precipitation is very important.
Second, the values of adverse climate and land use thresholds provide the decision maker with an indica-
tion of how robust a watershed is to changing conditions. If small changes in climate/land use cause a tran-
sition to vulnerable regimes, a highly risk averse strategy should be followed to tackle such potential future
change. Third, studies focusing on impact of climate change on water resources generally neglect the role
of land use change while both are likely to occur concurrently in watersheds. We provide one way to com-
bine both of these stressors in a common framework.

There are limitations in this study that allow for future improvements. First of all, the exploration of climate
space using the delta change method does not allow the stakeholder to analyze the impact of changing
precipitation characteristics beyond the mean amount (e.g., frequency of wet days) on the resultant stream-
flow indicator. This limits our ability to test how precipitation changes will impact frequency characteristics
of streamflow. Use of weather generators that allow the variation in several hydrologically relevant charac-
teristics of precipitation could reduce this problem in the future. Also the modeled impact of land use
change in our study is based on percentage of vegetation in the watershed and does not consider the
impact of changing leaf area indices on interception or other vegetation related hydrologic impacts.

We also show that the classification trees derived using this approach may show some dependence upon
the choice of vulnerability thresholds for the hydrologic indicators. Furthermore, the results presented here
are from as single model structure that leaves model structural uncertainty unaccounted for in our current
analysis. However, the framework can potentially incorporate this uncertainty due to its ability to
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incorporate categorical data that allows for inclusion of more than one model structures as separate catego-
ries of input data. Finally, there can be large uncertainties (large misclassification error rates) in the classifi-
cation trees themselves, indicating a complex control on the hydrologic indicator that is not easily
segregated by using CART. While we have addressed this issue by representing this uncertainty visually as
histograms at each leaf node, other classification methods (such as random forests) can be explored in the
future for addressing such cases.

In summary, our method allows stakeholders to assess the vulnerability of a watershed to climate and land
use change within a hydrologic modeling framework. It provides a novel way to incorporate various sources
of information about the watershed’s behavior to assess its response to changing climate or land use or
both. By combining the results of this approach with available climate projections, decisions makers will be
better equipped to appraise different alternatives for future action.
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