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• Downscaling of rainfall totals in south
Florida, U.S., reproduced observed
values during the historical period
(1976-2005).

• Raw climate model outputs poorly rep-
licated historical rainfall totals but sta-
tistical downscaling reproduced
observed values.

• Projections of future rainfall yielded
drying conditions, magnitude depends
on timeframe and future greenhouse
gas emissions.

• Anticipated frequency of wet days will
likely decrease and the average length
of dry spells increases.
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Wemake future projections of seasonal precipitation characteristics in southern Florida using a statistical down-
scaling approach based on Self OrganizedMaps. Our approach is applied separately to each three-month season:
September–November; December–February; March–May; and June–August. We make use of 19 different simu-
lations from the Coupled Model Inter-comparison Project, phase 5 (CMIP5) and generate an ensemble of 1500
independent daily precipitation surrogates for each model simulation, yielding a grand ensemble of 28,500
total realizations for each season. The center and moments (25%ile and 75%ile) of this distribution are used to
characterize most likely scenarios and their associated uncertainties. This approach is applied to 30-year win-
dows of daily mean precipitation for both the CMIP5 historical simulations (1976–2005) and the CMIP5 future
(RCP 4.5) projections. For the latter case, we examine both the “near future” (2021–2050) and “far future”
(2071–2100) periods for three scenarios (RCP2.6, RCP4.5, and RCP8.5).
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1. Introduction

Key climate change impacts are found at regional and local scales.
Several studies (Hartmann et al., 2013; Portmann et al., 2009) demon-
strate that climate change has so far had substantial impacts on the hy-
drological cycle and associated extreme weather events. With the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2018.04.144&domain=pdf
https://doi.org/10.1016/j.scitotenv.2018.04.144
jdfuentes@psu.edu
Journal logo
https://doi.org/10.1016/j.scitotenv.2018.04.144
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


1111P. Sinha et al. / Science of the Total Environment 635 (2018) 1110–1123
advancement of computer resources andmore accurate representations
of large-scale atmospheric processes, General Circulation Models
(GCMs) are able to represent changes in temperature and precipitation
(Sarojini et al., 2012; Kumar et al., 2013) at large-scales. However,
present-day GCMs are typically run at fairly coarse spatial resolution
(average latitudinal resolution is 1.3°, Taylor et al., 2011), such that
key physical processes (such as regional convection) may not be well
resolved. The direct (what we refer to as “raw”) output from GCMs
may thus not provide reliable or useful information about regional
and local changes in climate, including hydroclimatic phenomena at
local (b100 km) spatial and short (daily) temporal scales. Given the im-
portance of such information for key stakeholders and policymakers, al-
ternative means for assessing local hydroclimatic impacts of climate are
needed (Wagener et al., 2010).

One approach to solving this problem involves the use of downscal-
ing techniques to produce finer or local scale weather and climate infor-
mation (Wood et al., 2004). These techniques can be broadly divided
into statistical and dynamical downscaling (Wilby and Wigley, 1997;
Murphy, 1999). Statistical downscaling techniques seek relationships
between local scale variables (referred as predictant variables) and
characteristics of large-scale fields (referred as predictor variables)
(Hewitson and Crane, 1992; Wilks, 1995; Hewitson and Crane, 1996;
Ning et al., 2012a). In the Fourth Assessment Report of the Intergovern-
mental Panel on Climate Change (IPCC, AR4), theperformance of several
downscaling techniques was assessed (Christensen et al., 2007), estab-
lishing that downscaling techniques can improve the GCM-based cli-
mate simulation at the local scale. The IPCC AR5 assessment (2013)
further demonstrated the utility of downscaling techniques for im-
proved local-scale information climate assessments (Flato et al., 2013).
Although several downscaling methods have been used (Cavazos,
1997; Crane and Hewitson, 1998; Wilby et al., 1998; Crane et al.,
2002), statistical approaches using artificial neural networks (ANNs)
are increasingly favored due to their capacity for capturing nonlinear re-
lationships between predictors and predictants (Snell et al., 2000;
Schoof and Pryor, 2001; Hewitson and Crane, 2006; Ning et al., 2012a).

Previous studies (Trimble et al., 2005; Obeysekera et al., 2011;
Goly and Teegavarapu, 2013; Swain et al., 2014) used the GCMs
and downscaled GCMs outputs to investigate the characteristics of
precipitation over the Florida region, U.S. Trimble et al. (2005) exam-
ined the usefulness of teleconnections between south Florida rainfall
and natural climate variability for the purpose of water management
strategies in that region. Obeysekera et al. (2011) extensively inves-
tigated the performance of several GCMs of Coupled Model Inter-
comparison Project, phase 3 (CMIP3) for Florida, and concluded
that GCMs have limited skill in representing the local-scale charac-
teristics of temperature and precipitation. They also illustrated that
direct outputs of GCMs may not be sufficiently “reliable” for water
management policies. In particular, the projections of precipitation
are difficult because most GCMs poorly present regional and small-
scale convection and phenomena such as breezes due to the coarse
resolutions of models (Murphy, 1999; Wilby et al., 1998; Schoof
et al., 2009). Goly and Teegavarapu (2013) examined statistical tech-
niques such as positive coefficient regression and multiple linear re-
gression and Goyal and Ojha (2010) applied stepwise regression and
bias correction spatial disaggregation (BCSD), and for precipitation
downscaling from GCMs to single stations in Florida. In addition,
Tripathi et al. (2006) used support vector machine (a kernel based
neural network) and Sinha et al. (2013) employed canonical correla-
tion techniques, to derive statistical downscaling of precipitation at
monthly and seasonal time scales in India. Such studies revealed
that the downscaled precipitation is closer to observations as com-
pared to GCM outputs. Their studies also indicate that support vector
machine performs better than other techniques. Other studies (Khan
et al., 2006; Rousi et al., 2015) indicate that the performances of
ANN-based downscaling approaches are reliable and satisfactory;
however, the same is yet to be evaluated for the Florida region.
Crane and Hewitson (1998) applied ANN-based approaches for
downscaling precipitation over mid-Atlantic and northeast regions of
theU.S., and found significant amount of changes in precipitation during
spring and summer. The Self-Organizing Maps (SOM) (Kohonen, 1989)
based downscalingmethodology (Hewitson and Crane, 2006)was eval-
uated on precipitation downscaling at the station level in Pennsylvania,
U.S. by Ning et al. (2012a). They used predictorfields fromCMIP3model
outputs to downscale precipitation over seventeen stations in Pennsyl-
vania. They demonstrated that characteristics (intensity and variability)
of precipitation in the downscaled output agree more closely to obser-
vations than the ones generated from raw GCM outputs. The SOM is a
two-dimensional array of nodes, where a vector representing the aver-
age of the surrounding points in the original data space describes each
node. Amatrix of ‘n’ variable data points and ‘m’ observations represent
the input dataset. In the SOM, a reference vector of length n describes
each node. The initial step in the SOM training involves assigning ran-
dom values to each node reference vector and then comparing the
data record with each node vector. The reference vector that most
closely matches the data vector is defined as the ‘winning’ node. Then,
the reference vector of the winning node is updated slightly towards
the direction of the input data by a factor termed the ‘learning rate’.
All the surrounding nodes are also updated in the direction of the
input data by a smaller learning rate. The entire process is then repeated
for multiple iterations until the differences between iterations are
smaller than a selected threshold value. Crane andHewitson (2003) de-
scribed this training procedure.

It is important to recognize that the SOMand the BCSD belong to dif-
ferent categories of downscaling methods (Maraun et al., 2010). The
SOM-based downscaling belongs to the ‘perfect prognosis’, whichbuilds
statistical relationships between atmospheric synoptic circulation pat-
terns and regional variables (precipitation and temperature) and ap-
plies the resulting relationships to the model simulated synoptic
circulation patterns. In contrast, the BCSD belongs to model output sta-
tistics, which directly applies to the statistical processingmethods to the
model simulated precipitation and temperature data. Therefore, it is ex-
pected that the results from the SOM-based downscaling and BCSDmay
yield different results.

The IPCC Fifth Assessment Report (AR5) shows that, during the pe-
riod 1951–2010, over the Florida region, trends in precipitation are pos-
itive (greater precipitation) with the use of Global Historical
Climatology Network (GHCN) data while the computed trend is nega-
tive when Global Precipitation Climatology Centre (GPCC) data are
used (Hartmann et al., 2013). On the other hand, instrumental records
from the Climate Research Unit (CRU) indicate positive trends over
northern parts of Florida and negative trends over southern parts of
Florida. Furthermore, the IPCC AR5 (Flato et al., 2013) indicates that
the probability of the decrease in precipitation will be higher over the
region in the projected future climate scenarios. However, characteris-
tics of precipitation may vary from region to region over the southeast-
ern parts of North America. The GCMs are not capable to depict the
spatial variations of meteorological variables, especially precipitation
at fine scale (Obeysekera et al., 2011). Thus, for improved understand-
ing of climate changes at local scales, the GCMs outputs are needed to
translate into high resolution. To generate hydroclimatic projections,
hydrological models normally require high-resolution climate change
data from downscaling methods. This means that climate information
must be provided at comparable spatial resolution to adequately inves-
tigate changes in hydrological variables (Krause et al., 2005).Wood et al.
(2004) applied the BCSD method to both Parallel Climate Model (PCM)
and Regional Climate Model (RCM) outputs and revealed that the BCSD
method could reproduce the key characteristics of observed hydrome-
teorological conditions in both cases.

South Florida is the peninsular region of North America, and its
current population is approximately 6 million and is expected to
reach around 15 million in the next 30 years (Rayer and Wang,
2017). With the increase in population, the need for water will
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grow by 2.5 times to maintain a sustainable societal demand (Smith
and Rayer, 2013). As a consequence of global warming and sea level
rise, the quantity and the quality of water for drinking and low-
lying agricultural and forested areas will be perniciously impacted.
In the context of climate change scenarios, precipitation patterns
and intensity can be modulated in the future (Portmann et al.,
2009). Information about the anticipated changes in rainfall pat-
terns at local scale are required to develop sustainable water use
policy and decision-making on adaptation strategies. Therefore, in
Fig. 1. Locations of the observation stations (65 stations) in south Florida included in this st
numbers) are provided in Table 1.
this study, our goal is to evaluate the appropriateness and the ad-
vantages of ANN-based approaches (Hewitson and Crane, 2006)
for the downscaling of rainfall estimates in south Florida. We select
ANN-based approaches because of their improved performance
over other statistical downscaling methods. For the regional down-
scaling, the Coupled Model Inter-comparison Project, phase 5
(CMIP5) model outputs are employed as predictor variables to de-
termine the daily rainfall at the station level. Using the downscaled
outputs, the projected changes in precipitation over south Florida
udy. Station names and corresponding latitude-longitude locations (according to serial
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for the “near future” (2021–2050) and “far future” (2071–2100) pe-
riods are examined. Prior to that, the uncertainties associated with
the employed approaches, for the period of the instrumental record
(1976–2005), are determined and assessed.

2. Data and methodology

2.1. Study region

This study includes the Florida region that is bounded from 25°N
to 30°N in the north–south and from 87°W to 80°W in the east-west
direction (Fig. 1). The study area is the peninsular region of Florida
and is situated between the Gulf of Mexico and the Atlantic Ocean.
This region has flat and low-lying terrain having elevation less than
(or equal to) 3.7 m. However, the average elevation for the state of
Florida is approximately 30 m from mean sea level (Kosovich,
2008). The Everglades covers (with an area of approximately
13,000 km2) a large part of the southern half of south Florida and is
a subtropical marshy land, swampy, and a partly forested region.
This region is characterized by clumps of tall sawgrass and slough
systems. It has well defined wet and dry seasons. The wet season
spans from June to October and the dry season includes November
to May. In general, the hottest periods span from mid-May to mid-
October. The peak rainy season extends from June to August (hereaf-
ter referred to as JJA) while peak boreal winter is from December to
February (hereafter referred to as DJF). The region is characterized
by extreme weather events such as heavy rainfall caused by tropical
storms, and droughts that have impacts on water supplies and agri-
culture. Sea level is changing at the rate of 1–3 mm per year (Rhein
et al., 2013) and the rate of inflow of salty water is also increasing
through coastal areas. The incursion of salty water affects the highly
valued agricultural systems in south Florida (Harrington andWalton,
2007).
Table 1
Stations names and locations (according to serial numbers shown in Fig. 1) considered for the

Sl no. Station name Latitude Longitude

1 Orlando 28.433 −81.317
2 Daytona beach Int. Air. 29.183 −81.05
3 Fort Myers page field 26.583 −81.867
4 Key West Inter. Airport 24.55 −81.75
5 Miami Inter. Airport 25.8 −80.267
6 Tampa Intern. Airport 27.967 −82.533
7 West Palm Beach 26.683 −80.1
8 Key West 24.583 −81.683
9 Arcadia 27.233 −81.85
10 ArchboldBio Station 27.183 −81.35
11 Avon Park 27.6 −81.533
12 Bartow 27.9 −81.85
13 Belle Glade 26.667 −80.633
14 Bradenton 27.45 −82.467
15 Brooksville 28.617 −82.367
16 Bushnell 28.667 −82.083
17 Canal Point 26.867 −80.617
18 Clermont 28.483 −81.783
19 Crescent City 29.433 −81.517
20 Cross City 29.65 −83.167
21 Deland 29.017 −81.3
22 Desoto City 27.367 −81.517
23 Devils garden 26.6 −81.133
24 Everglades 25.85 −81.383
25 Federal Point 29.75 −81.533
26 Flamingo Ranger Stn 25.15 −80.917
27 Fort Drum 27.583 −80.833
28 Fort Green 27.567 −82.133
29 Fort Lauderdale 26.1 −80.2
30 Fort Pierce 27.467 −80.35
31 Hialeah 25.833 −80.283
32 High Springs 29.833 −82.6
33 Hillsborough River State 28.15 −82.233
2.2. Data

In this study, we use three sets of data for the downscaling proce-
dure: National Centers for Environmental Prediction (NCEP) reanalysis
of daily gridded atmospheric data, observed daily station precipitation
data, andGCMdaily gridded atmospheric data. Dailymeanprecipitation
observations over 65 stations in the Florida region were obtained from
the National Oceanic and Atmospheric Administration (NOAA)'s Na-
tional Climate Data Center (NCDC) (http://www.ncdc.noaa.gov/cdo-
web/). Fig. 1 shows the geographical location of the stations and
Table 1 provides associated latitude-longitude information and name
of the station. Atmospheric variables from the NCEP-National Center
for Atmospheric Research (NCAR) reanalysis gridded data (Kalnay
et al., 1996) and General Circulation Model's (GCM's) outputs from
the Climate Model Inter-comparison Project (CMIP, phase 5; CMIP5)
outputs (Taylor et al., 2011) were used: zonal and meridional compo-
nents of the wind speed at the 10-m height and 700-hPa pressure
level, relative humidity at the 850-hPa pressure level, air temperature
anomalies at the 2-m height, and temperature lapse rate between 850
and 500-hPa pressure levels. These meteorological variables were se-
lected because of their dominance on occurrences of local precipitation.

The GCM daily frequency gridded data are available from the Pro-
gram for Climate Model Diagnosis and Inter-comparison (PCMDI;
http://pcmdi9.llnl.gov/esgf-web-fe/live#). In the historical simulations
of CMIP5 models, changes of several important atmospheric and land
surface conditions (e.g., solar forcing, concentrations of aerosols from
both natural and anthropogenic sources, atmospheric composition due
to anthropogenic and volcanic influences, and land use) are consistent
with the observations during the historical era (Taylor et al., 2011).
For future simulations of CMIP5 models, we consider three different
representative greenhouse concentration pathways (RCP), namely
RCP2.6, RCP4.5, and RCP8.5 scenarios. These scenarios are based on im-
pacts of different scales of greenhouse gas emissions. For example, the
present study.

Sl no. Station name Latitude Longitude

34 Immokalee 26.467 −81.433
35 Inverness 3 SE 28.833 −82.333
36 Kissimmee 2 28.283 −81.417
37 La Belle 26.75 −81.433
38 Lisbon 28.867 −81.783
39 Melbourne 28.067 −80.617
40 Moore Haven 26.833 −81.083
41 Mountain Lake 27.933 −81.6
42 Myakka 27.233 −82.317
43 Naples 26.167 −81.783
44 Ocala 29.2 −82.083
45 Okeechobee 27.217 −80.8
46 Parrish 27.583 −82.433
47 Plant City 28.017 −82.133
48 Punta Gorda 26.917 −82
49 Royal Palm 25.383 −80.6
50 St Augustine 29.9 −81.317
51 Saint Leo 28.333 −82.267
52 Sanford 28.8 −81.233
53 Stuart 27.217 −80.25
54 Tamiami 25.75 −80.833
55 Tarpon 28.15 −82.75
56 Tavernier 25 −80.517
57 Titusville 28.583 −80.833
58 Usher Tower 29.417 −82.817
59 Venice 27.1 −82.433
60 Vero Beach 27.633 −80.45
61 Wauchula 27.567 −81.817
62 WeekiWachee 28.517 −82.583
63 Winter Haven 28.017 −81.75
64 St Petersburg Albert 27.767 −82.633
65 Miami Beach 25.783 −80.133

http://www.ncdc.noaa.gov/cdo-web
http://www.ncdc.noaa.gov/cdo-web
http://pcmdi9.llnl.gov/esgf-web-fe/live
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RCP4.5 scenario is the central scenario in which the radiative forcing
will reach 4.5 W m−2 by 2100 and stabilize afterwards (Clarke et al.,
2007a, 2007b). The RCP2.6 and RCP8.5 scenarios are considered to un-
derstand the minimum and extreme impact of greenhouse gasses in
the projected precipitation. Also, the central scenario represents the
most likely climate state of the projected future (Moss et al., 2010;
Taylor et al., 2011). Here, we employ nineteen GCM models from the
CMIP5 (http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html) and pro-
vide the relevant model information in Table 2.

We consider three data sets for “historical” (from January 1, 1976 to
December 31, 2005), “near future” (January 1, 2021 to December 31,
2050), and “far future” (January 1, 2071 to December 31, 2100) periods
for precipitation downscaling. Each of the periods consists of 30 years.
For the GCM data sets, long-term historical simulations are considered
for the past period and all the three scenarios for future periods.

2.3. Regional downscaling methodology

2.3.1. The SOM procedure
Before applying the downscaling procedure, we converted all GCMs

and NCEP-NCAR reanalysis data into the regular grid size of 2.0° × 2.0°
to keep atmospheric variables in the same horizontal resolution
(222 km). The present downscaling technique is based on the previ-
ously applied SOM approach (Hewitson and Crane, 2006). The SOM
method uses the synoptic features of the meteorological variables
surrounded by the location/point to determine the characteristic
modes for downscaling. This method is based on the fuzzy-clustering
Table 2
CMIP5 coupled models with their names and horizontal resolutions (longitude × latitude, in d
models.

Sl.
no.

Model In

Acronym Expansion

1⁎ ACCESS1–0 Australian Community Climate and Earth System Simula-
tor coupled model

C
A

2⁎ ACCESS1–3 Australian Community Climate and Earth System Simula-
tor coupled model

C

3⁎ CMCC-CM Centro Euro-Mediterraneo sui Cambiamenti Climatici
(CMCC) Climate Model

C

4⁎ CMCC-CMS CMCC Coupled Modelling System C
5⁎ CNRM-CM5 Centre National de RecherchesMétéorologiques Coupled

Global Climate Model, version 5
C
E
(

6⁎ MIROC-ESM Model for Interdisciplinary Research on Climate (MIROC),
Earth System Model

A
T
A

7⁎ MIROC-ESM-CHEM MIROC Earth System Model A
8⁎ MPI-ESM-LR Max Planck Institute (MPI) Earth System Model, low

resolution
M

9⁎ MPI-ESM-MR MPI Earth System Model, medium resolution M
10⁎ MRI-CGCM3 Meteorological Research Institute Coupled

Atmosphere–Ocean General Circulation Model, version 3
M

11⁎⁎ BNU-ESM Beijing Normal University Earth System Model B
12⁎⁎ CanESM2 Second Generation Canadian Earth System Model C
13⁎⁎ GFDL-ESM2G Geophysical Fluid Dynamics Laboratory (GFDL) Earth

System Model (ESM) with Generalized Ocean Layer
Dynamics (GOLD) component (ESM2G)

N
(

14⁎⁎ GFDL-ESM2M GFDL-ESM with Modular Ocean Model 4 (MOM4)
component (ESM2M)

N

15⁎⁎ IPSL-CM5A-LR L'Institut Pierre-Simon Laplace Coupled Model (LMDZ4),
version 5, coupled with NEMO, low resolution

L

16⁎⁎ IPSL-CM5A-MR L'Institut Pierre-Simon Laplace (IPSL) Coupled Model,
version 5, coupled with NEMO, medium resolution

IP

17⁎⁎ IPSL-CM5B-LR IPSL Coupled Model (LMDZ5), version 3.1, coupled with
NEMO, low resolution

IP

18⁎⁎ bcc-csm1–1 Beijing Climate Center Climate System Model, version 1.1
(bcc-csm1–1)

B

19⁎⁎ bcc-csm1–1-m bcc-csm1–1 with moderate resolution B

Single asterisk represents that models consider the standard Gregorian calendar, i.e. they do con
each year, i.e., they do not consider 366 days for leap year.
algorithm and widely used to visualize and characterize multivariate
data sets (Kohonen, 1989, 1995). It identifies the groups of input vari-
ables with certain common characteristics and enables to reduce large
and multi-dimensional data sets into fewer dimensions. A ‘Kohonen’
SOM consists of nodes of two-dimensional arrays, and each node is rep-
resented by a feature vector having the same length as the number of
input variables. The input variables are fully connected with the output
in the SOM approach. The weights of the connections between the
nodes and the input variables are described as components of the fea-
ture vector. In the “training” of a SOM, initially random small values
are given as weights and compare each node (feature) with the data
vectors and the closest node vector is considered as “winning” node.
Then the winning vector is updated by a process known as the “learn-
ing” (andwith a rate termed as “learning rate”) tomodify the vector to-
wards the input data direction. In this process, the neighboring nodes
are also modified towards input data direction by a smaller learning
rate. As this process is repeated, the node vectors are gradually modi-
fied, and neighboring nodes have the similar feature vectors. The
Euclidean distance to all node vectors defines the similarity between
the vectors. This process is continued until the measured distance
reaches a selected threshold value.

In the present study, we use the seven variables obtained from
NCEP-NCAR reanalysis to generate the SOM (Fig. 2). Firstly, one partic-
ular node that is closest to the observed daily atmospheric data is se-
lected for each day. Then we consider all those days that are mapped
onto that particular node and rank the precipitation of those days
from low to high. In order to define a continuous cumulative
egrees) considered for this study. A single realization i.e., realization r1i1p1 is used for all

stitute, Country Atmospheric
resolution
(Lon × Lat)

entre for Australian Weather and Climate Research (CAWCR),
ustralia

1.9° × 1.25°

AWCR, Australia 1.9° × 1.25°

entro Euro-Mediterraneo sui CambiamentiClimatici (CMCC), Italy 0.8° × 0.8°

MCC, Italy 1.9° × 1.9°
entre National de RecherchesMétéorologiques (CNRM)/Centre
uropéen de Recherche et de Formation Avancée en CalculScientifique
CERFACS), France

1.4° × 1.4°

tmosphere and Ocean Research Institute (AORI, The University of
okyo), National Institute for Environmental Studies (NIES), and Japan
gency for Marine-Earth Science and Technology (JAMEST), Japan

2.8° × 2.8°

ORI (The University of Tokyo), NIES, and JAMEST, Japan 2.8° × 2.8°
ax Planck Institute for Meteorology (MPI-M), Germany 1.9° × 1.9°

PI-M, Germany 1.9° × 1.9°
eteorological Research Institute (MRI), Japan 1.1° × 1.1°

eijing Normal University, China 2.8° × 2.8°
anadian Centre for Climate Modelling and Analysis (CCCma), Canada 2.8° × 2.8°
ational Oceanic and Atmospheric Administration
NOAA)/Geophysical Fluid Dynamics Laboratory (GFDL), USA

2.5° × 2.0°

OAA/GFDL, USA 2.5° × 2.0°

'Institut Pierre-Simon Laplace (IPSL), France 3.75° × 1.9°

SL, France 2.5° × 1.2°

SL, France 3.75° × 1.9°

eijing Climate Center (BCC), China 2.8° × 2.8°

CC, China 1.125° ×
1.125°

sider 366 days for leap year. Double asterisk represents that models consider 365 days for

http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html


Fig. 2. Schematic diagram of the present downscaling process using self-organizing maps (SOMs). In the diagram, text in black color represents the SOM downscaling process and text in
blue color represents the process to construct one prediction from SOMgenerated outputs (grand ensemble). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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distribution function (CDF) of the precipitation, a spline is fit to the
ranked precipitation data of each node. This procedure is repeated for
all the SOM nodes and all points. For each day, the atmospheric state
of the GCMs data is closest to a particular node of the SOM. Then, the
precipitation for that day is selected from the CDF of that node by
using a random number generator. Ning et al. (2012a) provided a de-
tailed description on the procedure to downscale GCM data using the
SOM approach (Fig. 2).

For each station, the present SOM method generates 1500 sets of
daily precipitation estimates using atmospheric information from one
of the 19 GCMs. Each set can be referred to as a realization/ensemble
member. Thus, we have 28,500 (1500 sets ×19 numerical models) real-
izations that represent the characteristics of daily precipitation for each
period and each station. Realizations can be treated as a grand ensemble
(i.e., 28,500 realizations).

2.3.2. Methodology to construct one-time daily precipitation from grand
ensemble for each period and station

Usually, the ensemble average performs better than any single
model simulation in reproducing observations. Previous studies
(Brekke et al., 2008; Ning et al., 2012b) used different techniques to con-
struct a single precipitation time series. The multi-model ensemble
weighted-average technique is one of the useful methods; where, a
weighted fraction of amodel is the highest (lowest) in the future predic-
tion if the performance of that model is the highest (lowest) in simulat-
ing the past climate. Therefore, according to Ning et al. (2012b), the
model with higher skills in reproducing past climate will dominate the
projected changes in the future. In this study, a single time series is con-
structed from the multi-model grand ensemble based on the frequency
distribution of realizations and seasonal precipitation climatology for
each station and period.

For each time period, we give equal weight to all the simulated pre-
cipitations obtained from SOM downscaling approach using different
GCMs. In the procedure to generate one precipitation time series from
the grand ensemble for each station,we first consider four different sea-
sons, representing spring (MAM), summer (JJA), autumn (SON), and
winter (DJF) and compute seasonal precipitation climatology using
each realization data for a particular period. For a particular season,
we estimate the frequency distribution of the 28,500 realizations in
representing the precipitation climatology. We then consider one reali-
zation that represents or is close to the highest probability of the rainfall
distribution for that season. The same is repeated to find one best-fit re-
alization for each season. The representative realizations for the four
seasons may vary from station to station and from season to season.
Thus, for a particular year, each station daily precipitation is represented
by concatenating four representative realizations and continuing the
process to estimate daily time series of precipitation for a particular pe-
riod (Fig. 2).

As an example, consider one station (say S1) for which daily precip-
itation time series is generated for the historical period. The seasonal
precipitation climatology (mm per day) can be estimated by

Pk ¼
1
N1

XN1

i¼1

1
N2

XN2

j¼1

rf ij

8<
:

9=
;

2
4

3
5k ð1Þ

where Pk represents the precipitation climatology for a particular sea-
son, k represents the number of realizations (here k runs from 1 to
28,500), N1 is the number of years for the historical period (here
30 years), N2 is the number of days of that season, and rf represents
daily precipitation (mm) values obtained from the realization k. Thus,
for the historical period and for a particular season, we have 28,500
values of seasonal precipitation climatology obtained from each realiza-
tion. We then consider different categories of precipitation climatology
with interval of 0.1 mm per days, starting from 0 mm per day. We esti-
mate the distribution of the frequency of realization for precipitation cli-
matology of different categories by

vq ¼ 1
N

nq
� � ð2Þ

whereN is the total number of realizations (here 28,500), nq is the num-
ber of realizations that simulate the precipitation climatology (precipi-
tation climatology of a season can be represented by rain rate (mm
per day) or total amount (mm) of precipitation for that season) in cate-
gory q and v is the frequency of realization. A typical example for the fre-
quency distribution of realization and seasonal precipitation
climatology is shown in Fig. 3. Next, we choose the realization that is
close to the peak of the frequency distribution and consider it as the rep-
resentative realization for that season. In a similar fashion, we select one
realization for each season (DJF, MAM, and JJA) separately. Therefore,
for the historical period, four realizations represent four seasons at a



Fig. 3. Frequency distribution of seasonalmean rainfall (inmm per day; for the SON season) for theMiami International Airport station during the historical period of 1976–2005 (the red
circles denote the grandensemblemeanwhile the shaded region indicates the spread among realizations in the grand ensemble). (For interpretation of the references to color in thisfigure
legend, the reader is referred to the web version of this article.)
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particular station.We construct one single time series using four repre-
sentative realizations by concatenating successively the daily precipita-
tion data of representative realizations for DJF, MAM, JJA, and SON.
Finally, wemerge all year's data and construct onetime series for station
S1 in the historical period. The above procedure is repeated for all sta-
tions and separately for each period. A different approach is employed
to generate a precipitation time series from the grand ensemble. In
this approach, we consider the representative realization that simulates
the precipitation climatology close to the observations and the same
representative realization is used for historical and future periods.
Both approaches show almost similar signals in the projected precipita-
tion patterns. Therefore, we only present the results obtained from the
first method.

3. Results and discussion

Here we evaluate the performance of the climate downscaling in
order to summarize and discuss the results from applying the proposed
downscaling method including comparison of downscaled and ob-
served precipitation and validation of the downscaled products.
Fig. 4. Comparison of observed and downscaledmonthly rainfall averaged for all the stations in
the 10, 25, 50, 75, and 90 percentiles of the rainfall amounts.
3.1. Training of SOM with NCEP reanalysis data

The NCEP reanalysis of meteorological data is used to train the SOM.
Also, the SOM is employed to generate daily rainfall sequences during
the 1976 to 2005 training interval to access the performance of the
downscaling method. We generate 1500 realizations using the down-
scaling procedure. The probability distributionmethod described earlier
(Section 2.3.2) is employed to select a single representative time series.

In south Florida, there are distinct dry and wet seasons. During the
spring onset of the rainy season (MAM), total rainfall in such a period
can reach asmuch as 300mmover the threemonth period. The heaviest
rainfall occurs during the summer months (JJA) when rainfall amounts
can reach 350 mm in June (Fig. 4). Compared to observations, on aver-
age, the downscaling procedure reasonably captures the seasonal vari-
ability of rainfall. Although measurements exhibit greater variability
and include extreme events, on a monthly basis the downscaled aver-
aged rainfall reasonably agrees with observations, particularly during
the copious precipitation months of the rainy season (JJA). During the
later part of the rainy season (OND), rainfall observations tend to be
lower than the downscaled quantities (Fig. 4). In terms of the spatial
the study during the historical period of 1976–2005.For eachmonth, the box plots provide
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distribution of rainfall, the eastern region of south Florida experiences
the most abundant rainfall as a result of local sea-breeze-like atmo-
spheric circulation patterns (Cespedes, 2012;Misra et al., 2011). Rainfall
is relatively spatially homogeneous during the peak of the rainy season
due to the dominance of large-scale atmospheric features such as east-
erly waves and fronts (Blanchard and Lopez, 1985) that drive convec-
tion and formation of precipitating storms (Fig. 5).

The climatological mean precipitation (mm) for each season as ob-
tained from both observations and downscaled GCMs is shown
(Fig. 5) for the historical 1976–2005 period. The downscaled and actual
observed mean precipitation compare favorably for the MAM and SON
seasons, while the downscaling underestimates summer (JJA) mean
precipitation and overestimates winter (DJF) mean precipitation over
much of the domain (in the latter case, particularly over the southern
edge of Florida).

Comparison of theNCEP-downscaled results based on pattern corre-
lation coefficient and root mean square error (RMSE) (see Supplemen-
tal material) indicate favorable agreement between NCEP-downscaled
and observed precipitation totals. The pattern correlation (Supplemen-
tary Fig. 1) yields values close to or exceeding r = 0. 8 for all seasons.
3.2. Validation of GCM downscaled rainfall during the historical period

By contrastwith thehigh correlation patterns exhibited between ob-
servations and NCEP-downscaled historical precipitation, the pattern
correlations between observations and raw GCMs results (composite
of all 19 GCMs) are generally low at 0.27, −0.02, 0.74, and 0.56 for
MAM, JJA, SON, and DJF seasons, respectively. This indicates that the
downscaling technique is capable of closely reproducing the actual spa-
tial distribution of rainfall, while the rawGCMaverage fails to do so, par-
ticularly for the spring (MAM) and summer (JJA) seasons. The lack of
skill in the raw GCM for JJA puts into question the use of the GCM for
JJA that contributes much (roughly 41%) of the total annual rainfall in
south Florida (based on the monthly mean precipitation data from
1895 to 2016 provided by National Climatic Data Center; https://
climatecenter.fsu.edu/products-services/data/statewide-averages/
precipitation).
Fig. 5. Seasonal climatological mean precipitation (mm) for MAM, JJA, SON, and DJF seasons dur
observations while the lower panel indicates results from down scaling.
We further investigated the performance of the downscaling ap-
proach by analyzing the probability distribution (PDF) of precipitation
rate (mm per day) obtained from observations, downscaling of GCMs,
and rawGCM precipitation for the historical period, using the 19 obser-
vation stations in south Florida (Supplementary Fig. 2). In this process,
for the wet-season period only, we categorize precipitation rate from
0.25 to 50.25 mm per day with an interval of 1 mm. Rainfall with
N50.25 mm per day is included in the same category with 50.25 mm
per day because such a precipitation rate can be considered as heavy
rainfall events. In previous studies (Hershfield, 1971; Gallus and Segal,
2004; Ning et al., 2012a), precipitation N0.25 mm per day is considered
a wet day or a “rainy day”. We confine our analysis to rainy days.

We find that the downscaled precipitation probability distribution
generally resembles the observed precipitation probability distribution,
with the notable exceptions of “trace” precipitation events (when pre-
cipitation is b1 mm per day). The raw GCM precipitation probabilities,
by contrast, are too high compared to observations for “low” precipita-
tion events (precipitation b10 mm per day) and too low for the heavy
rainfall category. There is an overall indication of a dry bias in the
GCMs, while the downscaled GCM precipitation closely replicates the
observations. The downscaling approach shows amarked improvement
in all categories of precipitation intensity except the 10–20mm “moder-
ate rainfall” category. Our finding, that downscaling of the GCMs yields
significantly more accurate reproduction of observed precipitation than
the raw GCM output, is supported by previous work (e.g., Ning et al.,
2012a) reaching the same conclusion for an entirely different (Pennsyl-
vania) region of the U.S.

3.3. Projected changes in precipitation

Having established the improved estimates of downscaled GCMpre-
cipitation over the historical era, we next applied the downscaling ap-
proach to CMIP5 future projections to yield projections of future
seasonal rainfall characteristics in south Florida. We examine climate
scenarios corresponding to near (from 2021 to 2050) and far future
(from 2071 to 2100) periods. We first consider the middle-ground
emissions scenario of RCP4.5 (Fig. 6). Compared to the baseline histori-
cal period, we find that mean precipitation is projected to decrease in
ing the 1976–2005 historical interval. The upper panel displays results using precipitation

https://climatecenter.fsu.edu/products-services/data/statewide-averages/precipitation
https://climatecenter.fsu.edu/products-services/data/statewide-averages/precipitation
https://climatecenter.fsu.edu/products-services/data/statewide-averages/precipitation


Fig. 6. Seasonal precipitation climatology (mm) computed forMAM, JJA, SON andDJF seasons and shown in upper panel for near future period and in lower panel for far future period using
central (RCP4.5) scenario downscaled (constructed final product) data.
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the near future and these decreases become more substantial in the far
future. Qualitatively similar conclusions are reached for the more ag-
gressive mitigation (RCP2.6) and less aggressive mitigation (RCP8.5)
scenarios (results not shown) with the changes being more modest in
the former case and more pronounced in the latter case. Some recent
studies (Devaraju et al., 2015) argue that climate forcing by large-scale
deforestation could play an important role in changing precipitation
patterns, leading to further decreases in rainfall totals. We do not ac-
count for such impacts in this study.

Fig. 7 shows the uncertainty associated with the precipitation clima-
tology obtained from the downscaled data for the near future RCP4.5
Fig. 7.Uncertainty range for seasonalmean precipitation (mm) computed for theMAM, JJA, SON
panel for upper bound or maximum precipitation using the central (RCP4.5) scenario downsca
scenario. We consider the realizations that reflect 25% and 75% percen-
tiles in the PDF of grand ensembles (28,500 realizations) to represent
the likely climatological precipitation that may occur with minimum
(lower bound) and maximum (upper bound) magnitude, respectively.
The lower bound shows the least precipitation amount that is most
likely to occur for the region, while the upper bound indicates a likely
the maximum magnitude of precipitation. It is noticed that the uncer-
tainty has a mostly linear relationship to precipitation climatology.
However, there exist considerable spatial variations.

Fig. 8 represents the lower and the upper bound precipitation clima-
tology for far future periods. Fig. 8 suggests that the minimum
and DJF seasons and shown in the upper panel for lower bound orminimumand in lower
led (constructed final product) data for near future scenario.



Fig. 8.Uncertainty range for seasonalmean precipitation (mm) computed for theMAM, JJA, SON and DJF seasons and shown in the upper panel for lower bound orminimumand in lower
panel for the upper bound or maximum precipitation using the central (RCP4.5) scenario downscaled (constructed final product) data for far future scenario.
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precipitation climatology may likely decrease in the far future. The pre-
cipitation in the far future is less than the historical period even when
the upper bound precipitation is considered. Similar inferences can be
made for precipitation climatology and associated uncertainty obtained
from the downscaled final product with the use of Method B (Supple-
mentary Figs. 5–7). The reduction in wet season (i.e., in JJA) is notably
less during the projected climatic conditions, which could have impor-
tant consequences to the regional water management systems. We
Fig. 9. Probability of projected changes in seasonal precipitation climatology (mm per day) com
period and in lower panel for far future period using downscaled data. The changes (blue line) in
iterations of GCMs downscaled data for each period. The spread in the grand ensemble is show
located north of the south Florida region and for the RCP2.6 scenario. (For interpretation of th
article.)
examined the variability in the GCMs' raw precipitation (based on the
spread in the GCMs precipitation) for future periods (Figure not
shown) and found that the magnitude and spatial variation in the pre-
cipitation uncertainty are higher in the raw GCMs than the downscaled
data. This result demonstrates that the downscaling procedure reduces
the uncertainty in the projected precipitation changes. Kent et al.
(2015) suggested that the regional precipitation changes in the global
models are mainly because of shifting patterns in regional convection
puted for theMAM, JJA, SON and DJF seasons and shown in the upper panel for near future
the future are based on downscaled data for historical period and computed using 28,500

n in shaded region. The plot is for the Mountain Lake station (station number 41 in Fig. 1)
e references to color in this figure legend, the reader is referred to the web version of this



Fig. 10. Same as Fig. 7, but for the RCP4.5 scenario.
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and convergence zones. Long et al. (2016) found that the inter-model
uncertainty arises due to the different state in the model generated at-
mospheric circulations. Therefore, taking into account the above fact,
the downscaling approach takes multi-model atmospheric circulations
as inputs and generates precipitation having less noise. In general, out-
puts from CMIP5 models indicate drier conditions, particularly during
thewet season (June to August) over the southern parts of south Florida
(Fig. 8). However, the shift towards drying is small and the uncertainty
is higher in the CMIP5 models.

We further examine the “shift” in the precipitation climatology for
each station under the influence of each scenario. Fig. 9 shows the prob-
ability of projected changes in seasonal precipitation as compared to the
historical for theMountain Lake station (Table 1) and for theRCP2.6 sce-
nario. The shift of the peak in the PDF from “zero” indicates the likeli-
hood in experiencing precipitation changes during the future periods.
Interestingly, the PDF curves almost follow the normal distribution.
The precipitation climatology for MAM, JJA, and SON seasons will likely
Fig. 11. Same as Fig. 7, but f
“shift” towards “drier” climate, while DJF precipitation climatology will
probably remain unchanged during the future periods. Results (Fig. 8)
indicate that the “shift” in the far future is greater than the one for the
near future period, suggesting “drier” conditions. The spread in the
grand ensembles is narrower during MAM, SON, and DJF seasons, indi-
cating that the uncertainty associated with the precipitation changes is
less in the downscaled data. However, the spread in JJA is wider than in
the other seasons. This result may be because during the “wet” season
rainfall is associated with the complex interactions between small-
scale processes (Misra et al., 2011) to the large-scale (Blanchard and
Lopez, 1985) convective activity.

Figs. 10 and 11 provide the results of the PDF in precipitation
changes for RCP4.5 and RCP8.5 scenarios, respectively. In the near fu-
ture, for the central scenario, the “shift” increases as compared to the
RCP2.6 case. For the Mountain Lake station (Table 1), comparisons of
the “shift” for the different scenarios indicate that maximum rainfall
changes will likely occur in the RCP8.5 scenario followed by the
or the RCP8.5 scenario.



Fig. 12. Changes in seasonal precipitation climatology (in %) during future periods. We use downscaled data for historical and future periods. Computed changes in the future periods are
compared to historical (downscaled) data.Weuse thefinal product of downscaled fromgrand ensemble separately for each period and station. The changes in future periods are shown for
the central scenario; i.e., for RCP4.5 scenario.
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RCP4.5 and RCP2.6 cases in all the seasons except DJF. However, for all
the stations, the magnitude of the “shift” is greater in the RCP8.5 and
lowest in the RCP2.6 scenarios. It is also noticed that the changes are
greater in the far future than the near future. The significance test,
using the Mann-Whitney-Wilcoxon technique (Wilcoxon, 1945; Mann
and Whitney, 1947) and considering “no changes” in the precipitation
climatology as the null hypothesis, reveals that the precipitation
changes are significant for 70% (approximately) of the stations for fu-
ture periods in the case of central scenario. For the RCP8.5 scenario,
more stations show significant changes in seasonal precipitation. This
result demonstrates that the precipitation changes may occur in the
Fig. 13. Total number of wet days (rainfall ≥1 mm per day) with different categories of precip
(black), near future (light color) and far future (dark color). Near and far future periods for RC
by light and dark green and for RCP8.5 scenario are represented by light and dark red colors.
for each period. (For interpretation of the references to color in this figure legend, the reader is
future climate, and the magnitude of the changes depends on the in-
creases in the trajectory of greenhouse gas loadings.

Comparisons between the results for near and far future conditions
reveal that the RCP2.6 scenario does not show any reasonably changes
in the occurrences of consecutive dry days. However, the RCP4.5 and
RCP8.5 scenarios exhibit notable differences in the consecutive dry
days in the far future as compared to near future periods. The rate of
changes in the dry episodes is more in the RCP8.5 than the RCP4.5 sce-
narios. Increases in prolonged dry days will likely cause an increase in
the frequency of drought events. The decrease in rainfall will likely en-
hance the probability of drier climate in the south Florida region.
itation intensity (mm per day) using GCM downscaled (final product) data for historical
P2.6 scenario are represented by light and dark blue, for RCP4.5 scenario are represented
We average the wet-events over all the sixty-five stations and use the downscaled data
referred to the web version of this article.)



Fig. 14. Same as Fig. 12, but computed for different ranges of consecutive dry day (cdd) events.
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Departures of anticipated rainfall amounts are estimated to deter-
mine the magnitude of the changes and the impacted areas. For the
RCP4.5 scenario, comparisons of results for future periods with the his-
torical record illustrate that the rainfall departureswillmost likely reach
values ranging from 5% to 20% declines over much of south Florida, ex-
cept during the JJA and SON seasons when far future periods could ex-
perience decreased in precipitation exceeding 20% (Fig. 12). On
average, compared to the historical period, precipitation will likely de-
crease by asmuch as 10 to 15% in thenear and far future periods, respec-
tively. Based on the Method B (representative realization is close to
observation in terms of climatological values), rainfall departures
seem similar (Supplementary Fig. 8) during the future periods, except
for DJF seasonwhereMethod B shows a small increase over someplaces
in south Florida. In the peninsular region of Florida, the extreme
projected declines in precipitation reach 50% during the JJA season for
the 2071–2100 period under the influence of the RCP4.5 scenario
(Fig. 12). The overall expected changes in precipitation using both
methods yield almost the same results but rainfall departures exhibit
greater uncertainties in the projected precipitation 2071–2100 period.
While the exact magnitude of rainfall departures may themselves be
uncertain, the consistent patterns of decreased rainfall are significant
for future water availability.

It is anticipated that future climatic conditions could influence the
frequency of rainfall events in south Florida. To determine the likely
rainy events, we consider seven categories of rainfall events based on
different ranges of precipitation intensity starting from 0.25 mm per
day (Fig. 13). Precipitation is b1 mm per day and more than equal to
1 mm per day is considered as category 1 and intensity N50 mm per
day is considered as category 7. Wet days for all categories are likely
to decrease in the future periods as compared to the historical record
for all the climate scenarios. The rate of decrease in the number of wet
days is more in the RCP8.5 scenario. It is noticed in the RCP2.6 scenario
that the number of wet days is almost the same in both near and far fu-
ture periods. In the near future period, the changes in wet days for
RCP4.5 and RCP8.5 scenarios are almost the same. In the far future, the
decreasing rate is higher with the increasing of RCP scenario from 2.6
to 8.5 W m−2.

The number of consecutive dry days (CDD) is also expected to
change in south Florida in response to future climate conditions. We in-
vestigate the frequency of consecutive dry days in the future periods.
Several different categories of consecutive dry days are estimated for
historical and future periods (Fig. 14). The number of events is likely
to decrease for CDD categories that range from one day to a week. Cat-
egories having CDD ranges from 8 to 14 days (~2 weeks range), from 15
to 21 days (~3 weeks range), and from 22 to 28 days (~4 weeks range)
are likely to increase for all the climate scenarios. This result (Fig. 13) is
an important finding as prolonged dry episodes may reduce the ground
water levelswhich in turn enhance thepossibility of a drought situation.

4. Conclusions

We find that rainfall totals in south Florida downscaled using mod-
ern reanalysis of data closely reproduce the observed rainfall totals dur-
ing the modern historical period (1976–2005). We also found that raw
GCM data poorly replicate historical rainfall totals but statistical down-
scaling of the GCMs more accurately reproduces the historical rainfall
totals. Having validated the downscaling approach during the historical
era,we applied it to future climate projections. The resulting projections
yield an overall drying in all seasons over all of south Florida, the mag-
nitude of which depends on the timeframe (near future versus far fu-
ture) and the future greenhouse gas emission scenarios. Accordingly,
the frequency of wet days decreases and the average length of dry
spell increases. The inter-annual variation in projected rainfall is lower
in the downscaled data compared to observations, but it is better than
the GCM raw outputs. Downscalingmethods still need further develop-
ment to more realistically capture the daily and the inter-annual vari-
ability in rainfall patterns observed in south Florida.
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