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ABSTRACT

A new anomaly coupling technique is introduced into a coarse-resolution dynamic climate model [the Li�ege
Ocean Carbon Heteronomous model (LOCH)–Vegetation Continuous Description model (VECODE)–Earth

SystemModels of Intermediate Complexity Climate deBilt (ECBILT)–Coupled Large-Scale Ice–Ocean model

(CLIO)–Antarctic andGreenland Ice SheetModel (AGISM) ensemble (LOVECLIM)], improving themodel’s

representation of eastern equatorial Pacific surface temperature variability. The anomaly coupling amplifies the

surface diabatic atmospheric forcing within a Gaussian-shaped patch applied in the tropical Pacific Ocean. It is

implemented with an improved predictive cloud scheme based on empirical relationships between cloud cover

and key state variables. Results are presented from a perturbed physics ensemble systematically varying the

parameters controlling the anomaly coupling patch size, location, and amplitude. The model’s optimal param-

eter combination is chosen through calibration against the observed power spectrum of monthly-mean surface

temperature anomalies in the Ni~no-3 region. The calibrated model exhibits substantial improvement in equa-

torial Pacific interannual surface temperature variability and robustly reproduces El Ni~no–Southern Oscillation

(ENSO)-like variability. The authors diagnose some of the key atmospheric and oceanic feedbacks in themodel

important for simulating ENSO-like variability, such as the positive Bjerknes feedback and the negative heat flux

feedback, and analyze the recharge–discharge of the equatorial Pacific oceanheat content. They findLOVECLIM

robustly captures important ocean dynamics related to thermocline adjustment and equatorial Kelvin waves.

The calibrated model demonstrates some improvement in simulating atmospheric feedbacks, but the coupling

between ocean and atmosphere is relatively weak. Because of the tractability of LOVECLIM and its conse-

quent utility in exploring long-term climate variability and large ensemble perturbed physics experiments,

improved representation of tropical Pacific ocean–atmosphere dynamics in the model may more readily allow

for the investigation of the role of tropical Pacific ocean–atmosphere dynamics in past climate changes.

1. Introduction

The El Ni~no–Southern Oscillation (ENSO) is the

dominant mode of interannual variability in the earth’s

climate system. It affects temperature and precipitation
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patterns worldwide, with global environmental and so-

cioeconomic implications (McPhaden et al. 2006). A

hallmark of ENSO is the anomalous associated pattern

of sea surface temperature (SST) variation in the eastern

tropical Pacific Ocean, alternating between warm pha-

ses (El Ni~no) and cold phases (La Ni~na). These tem-

perature variations are caused by complex thermal and

dynamical ocean–atmosphere interactions and feed-

backs. Correctly simulating ENSO behavior in coupled

earth system models, including its internal variability

and response to external forcings, is of paramount im-

portance to the climate modeling community, particu-

larly because it is currently unclear how this critical

component of the earth system may be affected by an-

thropogenic climate change (e.g., Collins et al. 2010;

Vecchi and Wittenberg 2010; Newman 2013).

Comprehensive coupled general circulation models,

such as those used in the phases 3 and 5 of the Coupled

Model Intercomparison Project (CMIP3 and CMIP5),

have become powerful tools for examining ENSO be-

havior and dynamics (Randall et al. 2007), as well as

potential changes in ENSO mean state and variability

(e.g., Meehl et al. 2007). However, challenges remain in

simulating key statistical features of ENSO, given biases

in the current generation of these models. For example,

many models are unable to simulate a realistic annual

cycle of tropical Pacific SST (Jin et al. 2008), which is

important for understanding potential interactions be-

tween ENSO variability and the mean state (e.g.,

Battisti and Hirst 1989; Tziperman et al. 1997; Guilyardi

2006; Stein et al. 2011; McGregor et al. 2012).

Recent work suggests the ability of dynamicmodels to

simulate realistic ENSO variability is closely related to

capturing important atmospheric and oceanic processes

(Schneider 2002; Guilyardi et al. 2009b; Lloyd et al.

2009, 2012), particularly in simulating key feedback

mechanisms (Jin et al. 2006; Kim and Jin 2011). One

important relationship is the Bjerknes feedback

(Bjerknes 1969), which is a positive feedback mecha-

nism between surface temperature anomalies in the

Ni~no-3 region (58S–58N, 1508–908W) and zonal wind

stress anomalies within the Ni~no-4 region (58S–58N,

1608E–1508W). The other relationship is the negative

heat flux feedback, which relates surface temperature

anomalies to surface heat flux anomalies within the

Ni~no-3 region. Previous results have shown coupled mod-

els typically underestimate these feedbacks compared to

diagnoses using reanalysis data (Lloyd et al. 2009; Kim and

Jin 2011; Lloyd et al. 2012), while atmosphere-onlymodels

typically show better agreement with observations (Lloyd

et al. 2011).

CMIP5models appear to show some improvements in

simulating ENSO characteristics compared to CMIP3.

These improvements are primarily related to decreased

model spread in ENSO amplitude, resulting in an en-

semble mean that is closer to observations (Guilyardi

et al. 2012; Kim and Yu 2012). Preliminary analysis

suggests power spectra of monthly SST anomalies in the

Ni~no-3 region (58S–58N, 1508–908W) is also improved in

the CMIP5 models. However, such ENSO metrics

should be treated with caution owing to the relatively

short observational record used to gauge model per-

formance. In other words, the observational record

typically used to evaluate model performance may not

be of sufficient length to capture ENSO statistics ro-

bustly (Wittenberg 2009).

Given the high computational cost of running com-

prehensive, state-of-the-art coupled earth system

models, such as those developed by international mod-

eling groups participating in the CMIP3 and CMIP5

projects, it is difficult to utilize these models to examine

possible sensitivity of ENSO behavior to systematic

variations in the relevant model parameters over their

physically plausible ranges. These efforts would require

large ensemble experiments run for multiple centuries,

or even millennia when considering possible inter-

actions with parameters controlling deep ocean pro-

cesses (e.g., vertical diffusion, which requires multiple

millennia spin ups to achieve approximate dynamic

equilibrium of the full ocean). Such efforts are currently

not possible using higher-resolution (e.g., 18 3 18) fully
coupled modeling frameworks. In recent decades, more

simple minimum physics ENSO models have produced

major insights into fundamental ENSO dynamics (e.g.,

Zebiak and Cane 1987; Karspeck and Anderson 2007;

Bejarano and Jin 2008; McGregor et al. 2012). In

particular, past theoretical and numerical modeling

approaches have shown that capturing a realistic rep-

resentation of tropical Pacific SST variability hinges on

correctly simulating 1) the recharge–discharge of ocean

heat along the equator (e.g., Wyrtki 1975; Jin 1997);

2) the Bjerknes feedback (e.g., Bjerknes 1969), which

requires an accurate representation of tropical atmo-

spheric dynamics and the Walker circulation; and

3) oceanicKelvinwaves (e.g.,McPhaden 1999).A reduced

complexity coupled earth system model that is capable

of capturing the essential physical processes responsible

for ENSO may provide an advantage over more com-

prehensive CMIP models in examining characteristics of

ENSO variability both when long-run (e.g., millennial)

simulations are required and where large state spaces

(e.g., multidimensional perturbed physics ensembles) are

explored.

Here we present findings from a perturbed physics

ensemble to optimize the representation of ENSO var-

iability using an intermediate complexity climate model
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[Li�ege Ocean Carbon Heteronomous model (LOCH)–

Vegetation Continuous Description model (VECODE)–

Earth SystemModels of IntermediateComplexityClimate

deBilt (ECBILT)–Coupled Large-Scale Ice–Oceanmodel

(CLIO)–Antarctic and Greenland Ice Sheet Model

(AGISM) ensemble (LOVECLIM)]. Our version of the

LOVECLIM model includes several key enhancements

including a new dynamic cloud scheme, an updated linear

balance equation, and implementation of an anomaly cou-

pling technique to improve the representation of ocean–

atmosphere coupling in the equatorial Pacific. These

improvements lead to more realistic ENSO-like variability

in themodel. Themotivation of this work is to highlight the

use of an efficient and tractable reduced complexity earth

system model that can robustly simulate ENSO-like vari-

ability. Such a model may provide a useful tool for exam-

ining past and potential future changes in ENSO using

multiparameter perturbed physics ensemble approaches,

potentially in concert with assimilation of observational and

proxy climate data (e.g., Steinman et al. 2012).

The paper is organized as follows: section 2 describes the

version of LOVECLIM used in this study, including de-

tails about modifications and the anomaly coupling pa-

rameterization; section 3 outlines the model experiments

and the perturbed physics ensemble design; section 4 de-

scribes the calibration method and results; section 5 con-

tains discussion of the results and interpretations; section 6

provides caveats and a discussion of open questions; and

section 7 summarizes our main findings and implications.

2. LOVECLIM

We use a modified version of the fully coupled earth

system model LOVECLIM, version 1.2 (Goosse et al.

2010; Loutre et al. 2011). The LOVECLIM version used

in this study consists of a roughly 5.68 latitude by 5.68
longitude grid (spectral T21) three-level quasigeo-

strophic atmosphere component (ECBILT2), which in-

cludes also parameterizations of the ageostrophic

circulation, coupled to a 38 by 38 ocean general circula-

tion model with 20 vertical levels and includes a ther-

modynamic–dynamic representation of sea ice (CLIO3).

Compared to earlier versions, the ECBILT model ver-

sion employed here includes an updated balance equa-

tion, which accounts for the effect of divergent zonal

winds onto geopotential height, following a simplified

version of the balance equation used in Davis and

Emanuel (1991). ECBILT–CLIO is coupled to a land

vegetation model (VECODE) that includes dynamic

representation of trees, grasses, and desert. LOVECLIM

contains two additional model components, simulating

ocean biogeochemical cycles (LOCH) and ice sheet dy-

namics (AGISM), which are not used in the present study.

We introduce twonotablemodifications toLOVECLIM

including (i) development of a new dynamic cloud

scheme based on observed relationships between cloud

distribution and reanalyzed spatial fields of state vari-

ables and (ii) implementation of an anomaly coupling

technique to improve the representation of coupled

ocean–atmosphere processes (and thus potentially the

faithfulness of interannual variability) in the equatorial

Pacific. These modifications are described in the follow-

ing sections.

a. Dynamic cloud scheme

The standard version of LOVECLIM uses either

a prescribed observed cloud cover field based on present

day climatology or a highly simplified diagnostic cloud

scheme. To address potential shortwave and longwave

cloud feedbacks, we incorporated a new empirical cloud

scheme derived from spatial, long-term (1960–2000)

mean fields of the 40-yr European Centre for Medium-

Range Weather Forecasts (ECMWF) Re-Analysis

(ERA-40) (Uppala et al. 2005). While the standard

version of LOVECLIM contains a simplified diagnostic

cloud scheme, it is common practice to use prescribed

climatological cloud fields. Thus, improving the model

cloud representation can be useful for climate change

experiments considering changes in radiative feedbacks,

and it can result in better simulation of ENSO variability

(Kim et al. 2008; Neale et al. 2008).

The new scheme predicts cloud cover in LOVECLIM

based on observed relationships between key state var-

iables in ERA-40 and total cloud cover from the Inter-

national Satellite Cloud Climatology Project (ISCCP)

product (Rossow and Schiffer 1999), calculated using

cloud fields between about 1983 and 2001. No differen-

tiation into different cloud levels was undertaken. We

used the alternating conditional expectation (ACE)

value algorithm (e.g., Timmermann et al. 2001) to derive

a nonparametric, multiple regression,

y5C1(x1)1C2(x2)1C3(x3)1C4(x4) ,

where the observed long-term mean (1983–2001 time

average) ISCCP total cloud coverage y at each grid point

depends on the following four long-term mean state

variables at the same grid point: vertical velocity at

400 hPa x1, surface temperature x2, precipitation x3, and

relative humidity in the boundary layer x4. By using

long-termmeans, rather than daily or monthly fields, we

make the implicit assumption that short-term (synoptic,

intraseasonal–interannual) variability of the predictors

does not project onto the predicted long-term mean

cloud cover due to nonlinear processes. The corre-

sponding lookup tables for the general transformsCi are
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relatively smooth and can be fitted using cubic poly-

nomials (Fig. 1). The nonparametric fit of these four

variables resolves more than 80% of the variance of the

observed annual mean clouds. The vertical range (min-

imum to maximum) of the lookup tables provides im-

portant information on the relative contribution of the

respective variables to the total cloud cover. We find

that the y range of the lookup tables C1, C3 for vertical

velocity and precipitation (Figs. 1a,c; blue circles) is

smaller (,0.2) than for temperature and relative hu-

midity (.0.2), indicating a weaker overall contribution

of vertical velocity and precipitation to the empirical

cloud model compared to relative humidity and surface

temperature. We also find a saturation of cloudiness for

precipitation values larger than 1mm (3 h)21. Higher

relative humidity translates into larger cloud fraction.

The cloud–temperature relation is nonmonotonic and

peaks at temperatures around 280K. The reduction of

cloud coverage for temperatures .280K is associated

with the relatively low values of cloud cover in sub-

tropical regions. For annual mean temperatures.300K,

one observes again an increase in cloudiness, associated

with the onset of deep tropical convection. Note that the

cubic fit does not capture the increase in clouds for high

temperatures, whichmay lead to a slight underestimation

of cloudiness in the ITCZ regions, the Indian Ocean, and

western Pacific warm pool in our implemented scheme

(Fig. 2).

The cloud scheme is implemented in LOVECLIM by

calculating the vertically integrated cloud fraction at

each horizontal grid point in the model, based on the

polynomial fits derived from the ACE algorithm pro-

cedure, using the respective subdaily atmospheric fields

xi from LOVECLIM. The results (Fig. 2) for a pre-

industrial control simulation show that the new dynamic

cloud scheme generally reproduces better overall

agreement of cloud fractions with ISCCP fields in the

middle to high latitudes and eastern equatorial Pacific

than the standard version of LOVECLIM with the

original active cloud scheme. Note, however, that re-

maining biases in tropical cloudiness result mostly from

temperature, precipitation, and relative humidity biases

in the model partly related to relatively weak vertical

velocity fields in the tropics.

b. Anomaly coupling

Because of the coarse resolution of LOVECLIM, its

T21 resolution is essentially blind to relatively narrow

ENSO-related SST anomalies on the equator. We in-

troduce tropical anomaly coupling to reduce this prob-

lem. Previous strategies altering ocean–atmosphere

coupling have shown success in improving ENSO vari-

ability (Kirtman and Shukla 2002) and reducing mean

state biases in coupled models (Luo et al. 2005). The

parameterization enhances the diabatic forcing within

a specified patch in the tropical Pacific that intensifies

SST anomalies. In other words, the surface temperature

variability within this patch, as seen by the atmosphere,

is intensified. The anomaly coupling parameterization is

implemented using the following equation:

SSTa*(l,u, t)5 SSTa(l,u, t)1A[SSTa(l,u, t)

2 SSTc(l,u)] exp

�
2

�
l2P

L1

�2

2

�
u
L2

�2�
,

where SSTa* is the perturbed atmosphere surface tem-

perature, SSTa is the unperturbed atmosphere surface

temperature (the value obtained by the atmosphere

from the coupling routine), and SSTc is the climatological

FIG. 1. (top)–(bottom) C1(x1), C2(x2), C3(x3), and C4(x4) (blue:

lookup table) calculated using the ACE algorithm with ERA-40

state variables [vertical velocity at 400-hPa height (Pa s21), surface

temperature (K), precipitation (m s21), and relative humidity] and

the observed ISCCP cloud climatology data. Green lines represent

cubic polynomials.
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FIG. 2. Mean total cloudiness for (a) long-term ISCCP satellite product; (b) LOVECLIM

equilibrium simulation with the empirical ACE cloud scheme driven by model fields of vertical

wind velocity at 400 hPa, precipitation, surface air temperature, and relative humidity; and

(c) LOVECLIM equilibrium simulation with the standard active cloud scheme. Observed

mean cloudiness is ;0.68, and simulated mean cloudiness (in both the new and standard

diagnostic cloud schemes) is ;0.6. The rms error for the new and standard versions of

LOVECLIM is 0.14 and 0.16, respectively. LOVECLIM equilibrium simulations represent

constant preindustrial atmospheric forcing conditions.
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atmosphere surface temperature corresponding to cou-

pled model equilibrium (unforced) conditions; l and u
are the longitudinal and latitudinal positions, re-

spectively. SSTc is the daily climatological surface tem-

perature calculated from a 20-yr reference of the

equilibrium model conditions, prior to activation of the

anomaly coupling. The shape of the anomaly patch is

defined using a Gaussian function where the parameters

P, L1, and L2 define the zonal location on the equator

and the zonal and meridional length scales, respectively.

The amplitude of the coupling is controlled by an ad-

ditional parameter A. Figure 3 shows a schematic of the

anomaly coupling parameterization and parameters.

The aim of this parameterization is to amplify the at-

mospheric response to tropical surface temperature

variability and hence to increase the atmosphere–ocean

coupling strength. We thereby circumvent the model’s

inability to simulate a realistic tropical response to sur-

face temperature anomalies due to limited atmospheric

resolution. The anomaly coupling amplifies only the

surface temperature passed to the atmosphere compo-

nent (ECBILT), so the direct effects of the parameter-

ization are through enhanced variability of surface air

temperature. Therefore, any substantial effects on

ocean temperature are achieved through a dynamical

ocean response, such as thermocline adjustment and/or

Kelvin wave propagation related to ocean–atmospheric

feedbacks. Throughout the rest of the text any reference

to the model surface temperature pertains specifically to

surface air temperature in the model’s atmosphere

component ECBILT.

It has been noted previously that flux adjustment

methods in the tropics with large coupling amplitudes

can lead to potential instabilities, resulting in bifurca-

tions and multiple ENSO equilibria (Neelin and Dijkstra

1995). As a cross-check, we analyzed the model mean

surface temperature and thermocline depth in the equa-

torial Pacific over a wide range of anomaly coupling

parameter settings and found no instability issues for

reasonable values of the coupling amplitude parameterA.

We find that the model mean state and annual cycle of

surface air temperature and upper-ocean temperature

structure in the equatorial Pacific is somewhat sensitive

to the anomaly coupling parameterization (as shown in

Figs. 7–9 and discussed in the following sections). How-

ever, the model is stable for all values of A, with;0.18C
variation in mean tropical Pacific surface temperature

across the considered range inA (0.5–3.5). Similarly, the

range in zonal mean thermocline depth of the equatorial

Pacific (averaged from 1208E to 908W) is less than;3m

over the considered range in A. In other words, the

anomaly coupling mainly affects tropical Pacific surface

temperature variability and has little impact on themean

state. We find some rectification effects of the enhanced

variability on the mean state of upper-ocean properties,

but these effects lead to improvements in the model,

such as reducing the warm bias in the eastern equatorial

Pacific cold tongue and increasing the strength of the

equatorial undercurrent (Figs. 7 and 8, discussed in fol-

lowing sections). Overall, themean state is conserved for

the range in coupling strength A considered here.

3. Ensemble design

We constructed two perturbed physics ensemble ex-

periments to explore the sensitivity of tropical Pacific

variability to anomaly coupling parameters A, P, L1,

and L2. In addition to the anomaly coupling, the

LOVECLIM version in both ensembles contains the

modifications discussed in section 2 (i.e., the use of

a linear balance equation and a diagnostic cloud scheme

which uses the instantaneous fields of midlevel vertical

velocity, precipitation, surface temperature, and relative

humidity). The main ensemble consists of 49 members

representing unique combinations of the anomaly cou-

pling amplitude parameter (A: 0.5, 1.0, 1.5, 2.0, 2.5, 3.0,

and 3.5) and location parameter (P: 1708, 1608, 1508,
1408, 1308, 1208, and 1108W). The zonal and meridional

length scale parameters L1 and L2 were optimized sep-

arately using a smaller preliminary ensemble. We sep-

arated the ensembles into two distinct optimizations in

order to keep the ensemble sizes manageable, as dic-

tated by computational constraints. In the ensemble

presented here, the length scale parameters are held

fixed at their optimal values L1 5 358 (zonal width) and
L25 108 (meridional width). All ensemble members are

initiated from a 2000-yr spinup simulation with anomaly

coupling turned off. Each ensemble member is re-

equilibrated with the anomaly coupling turned on for an

additional 2000 years. After this reequilibration stage,

each ensemble member is run for an additional 500

years, saving monthly atmosphere and ocean fields that

we use for analyzing the ENSO characteristics and per-

forming model diagnostics. Atmospheric forcing conditions

FIG. 3. Schematic of the anomaly coupling parameterization.

The parameter P specifies the center location of the Gaussian-

shaped patch. The zonal and meridional e-folding length scales

of the patch size are controlled by the parameters L1 and L2,

respectively.
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are held fixed at preindustrial levels for the entire ensemble

experiment (both spinup and anomaly coupling phases).

4. ENSO calibration

We perform a model calibration using observational

ENSO statistics to determine the optimal combination

of anomaly coupling parameters A and P within the

ensemble described in section 3. Themodel parameters

are calibrated with second moment statistics using the

observed spectrumofmonthly-mean surface temperature

anomalies averaged over the Ni~no-3 region (58S–58N,

1508–908W), based on the ECMWF Ocean Re-Analysis

System 3 (ORA-S3) product (Balmaseda et al. 2008).

Results remain generally the same for other SST prod-

ucts [e.g., Tropical Atmosphere Ocean (TAO) buoy

array data].

The model’s monthly temperature anomalies are

calculated relative to the coupled model climatology

of each ensemble member. The calibration technique

emphasizes model–data agreement of ENSO statis-

tical properties, specifically the variance of the Ni~no-3

monthly temperature anomalies at frequencies typi-

cally associated with ENSO variability. We calculate

10 power spectra for each ensemble member, repre-

senting distinct 50-yr time slices from the 500-yr model

simulation with monthly output. We compare the mean

of the 10 power spectra to 50 years of ORA-S3 re-

analysis (1960–2009) (Fig. 4a). The optimal parameter

settings are defined as the ensemble member with the

minimum rms error in the spectrum compared to ob-

served SSTs between the frequencies 0.1 and 1 yr21 (or

periods of 1 and 10 yr). In the case where multiple en-

semble members exhibit very similar rms error, we also

consider the location of the spectral peak andmagnitude

of the variance in order to highlight model–data agree-

ment on ENSO time scales. Optimal parameter values

for the calibrated LOVECLIM are P5 1208W and A5
3.0 (red curve in Fig. 4a). The spectral results of the

perturbed physics ensemble show that the representa-

tion of interannual variability in Ni~no-3 surface tem-

perature is significantly improved in the calibrated

version of LOVECLIM. The power spectra for the cali-

brated model and reanalysis show similar broad spectral

peaks between 3 and 7 yr, indicating that LOVECLIM is

capable of simulating the irregular nature of interannual

El Ni~no–La Ni~na cycles (Figs. 4 and 5). We compare the

spectral results of the calibrated simulation with 35 more

comprehensive coupled atmosphere–ocean general cir-

culation models (Fig. 4b), comprising the majority of the

models (and internationalmodeling groups) participating

in CMIP5. The CMIP5 models represent the most up-to-

date and state-of-the-art coupled Earth system models.

FIG. 4. Power spectra (;10 degrees of freedom) of monthly-

mean surface temperature anomalies averaged over the Ni~no-3
region (58S–58N, 1508–908W), plotted as the normalized variance

on the y axis, as in Dijkstra (2006). (a) The observed spectrum

(black curve) is derived from the ERA-40 and ORA-S3 data for

the period 1960–2009. Gray curves show spectra for the individual

equilibrium LOVECLIM ensemble members varying anomaly

coupling strength and zonal patch location. The model’s power

spectra are calculated from 500-yr time series and represent the

mean of 10 different 50-yr spectra for each ensemble member.

The red curve denotes the ensemble member exhibiting the

minimum rms error referenced to the observations between fre-

quencies of 0.1 and 1. For reference, we also highlight the stan-

dard LOVECLIM model with no anomaly coupling and the

standard diagnostic cloud scheme (blue curve). (b) Comparison

between the observed Ni~no-3 spectrum (black curve), the cali-

brated LOVECLIM (red curve), and the range of spectra from

35CMIP5 model simulations (gray curves). Observed and cali-

brated LOVECLIM spectra are plotted as in Fig. 5a, and CMIP5

models are analyzed corresponding to historic forcing years

1960–2009.
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Figure 4b shows that the ENSO-like variability in the

calibrated version of LOVECLIM rivals the performance

of some of the CMIP5 models in simulating a realistic

spectrum of monthly Ni~no-3 surface temperature anom-

alies compared to the observations between 1960 and

2009. Many of the CMIP5 models overestimate the SST

variance and/or simulate unrealistically short ENSO cy-

cles that are oftentimes too periodic. However, we note

that the Ni~no-3 spectrum is only a single metric for ana-

lyzing ENSO in climate models, and many of the more

comprehensive CMIP models outperform LOVECLIM

in simulating metrics such as the mean state, cold tongue

bias, seasonal cycle, and phase locking (e.g., Guilyardi

et al. 2009b, 2012; Bellenger et al. 2013).

5. Discussion

The ENSO calibration highlights the improved

LOVECLIM performance in simulating interannual

tropical Pacific surface temperature variability. Key fea-

tures of these results include 1) the power spectrum of

monthly Ni~no-3 SST anomalies in the calibrated version

of LOVECLIM generally agrees with observations, and

2) the calibrated model is comparable with more com-

prehensive CMIP5models in terms of correctly capturing

the variance and frequency characteristics of Ni~no-3

surface temperature variability. However, we also find an

apparent bias in the skewness of the Ni~no-3 time series

for the calibrated LOVECLIM (Fig. 5). The observed

Ni~no-3 SST time series is positively skewed, meaning

the warm anomalies associated with El Ni~no events are

typically larger than the cold anomalies associated with

La Ni~na. The calibrated version of LOVECLIM shows a

negatively skewed time series (i.e., stronger La Ni~na

compared to El Ni~no). This bias is a robust feature of the

model and appears in all ensemble members, and the

magnitude of the skewness bias generally increases with

the variance. The positive skewness in the observedNi~no-3

SST time series is primarily due to large El Ni~no events,

whose growth can be accelerated as a result of westerly

wind bursts (Jin et al. 2007) or nonlinear dynamical

heating (Jin et al. 2003). We speculate that the simplified

three-layer atmosphere model in LOVECLIM does not

capture the necessary atmospheric dynamics to generate

these large El Ni~no events. Past results have indicated

that the lack of strong El Ni~no events can lead to zero

skewness in a linearmodel (Thompson andBattisti 2001).

Thus, the negative skewness may indicate the intro-

duction of nonlinearities in the calibrated version of

LOVECLIM, which are not present in the standard ver-

sion (Fig. 5). The skewness of the calibrated LOVECLIM

is approximately 20.68C, and the mean skewness of the

35CMIP5 models analyzed in Fig. 4b is ;0.06, with a

standard deviation of ;0.28. Even with the negatively

skewed Ni~no-3 time series, the calibrated version of

LOVECLIM reflects amajormodel improvement through

enhanced interannual variability of tropical Pacific sur-

face temperatures compared to the standard model.

In addition to improved time series statistics, the

calibrated model also shows improved patterns of sur-

face temperature variability within the Ni~no-3 region

compared to the standard version (Fig. 6). The standard

model substantially underestimates the magnitude and

zonal extent of equatorial Pacific temperature anoma-

lies. While the zonal variability is improved in the cali-

brated model, the model overestimates the magnitude

of the temperature variability, primarily in the Ni~no-3

region. Further, the meridional width of the modeled

surface temperature anomalies is too large, but this bias

is likely due to the coarsely resolved atmospheric model

grid (;58 3 58). Given these limitations, the calibrated

LOVECLIM is comparable to CMIP3 (Guilyardi et al.

2009b) and CMIP5 models (Kim and Yu 2012) in the

faithfulness of its simulation of the spatial patterns of

surface temperature variability in the tropical Pacific,

and many of those models share the same biases noted

FIG. 5. Time series of monthly-mean surface temperature

anomalies averaged over the Ni~no-3 region (58S–58N, 1508–908W)

for (a) the ERA-40 and ORA-S3 from 1960 to 2009, (b) the

LOVECLIM model calibrated to the observed power spectrum

(see Fig. 4), and (c) the out-of-box version of LOVECLIM. All

time series are smoothed using a 5-month running mean. The

shading represents El Ni~no (red) and La Ni~na (blue) events. The

variance (skewness) of each smoothed time series is 0.64 (0.98) for

(a), 0.83 (22) for (b), and 0.12 (20.61) for (c).
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here. However, owing to the fixed positioning of the

anomaly coupling patch, this technique is likely not ca-

pable of capturing potential westward progression of

temperature anomalies: for example, ‘‘central Pacific’’

flavors of El Ni~no (Ashok et al. 2007). The tele-

connections and climate implications of central Pacific

El Ni~nos can be much different than eastern Pacific

events, and recent evidence suggests that these events

have become more frequent and more intense in recent

years (Lee and McPhaden 2010). Because the eastern

Pacific is the primary region of interest for Pacific SST

variability, we focus on the Ni~no-3 region here for

model–data comparison and calibration.

As discussed in the introduction, simulating a realistic

mean state and seasonal cycle of tropical Pacific tempera-

ture are important factors for diagnosing a model’s ENSO

variability.We highlight the standardLOVECLIM’smean

state of tropical Pacific surface temperature (Fig. 7), upper-

ocean temperature and current structure (Fig. 8), and the

seasonal cycle of surface temperature (Fig. 9) compared to

reanalysis. We also analyze the sensitivity of the model

mean state and seasonal cycle to the calibrated anomaly

coupling. We find the standard version of LOVECLIM

exhibits somemean state biases typically shared with other

coarse-resolution intermediate complexity models, such as

a reduced zonal surface temperature gradient and a rela-

tively weak equatorial undercurrent. However, the cali-

brated anomaly coupling partially corrects these biases

(Figs. 7c and 8c). The subsurface ocean response is par-

ticularly interesting given that the direct effect of the

anomaly coupling is seen only by the atmosphere, thus

suggesting some indirect influence on upper-ocean prop-

erties through dynamical atmosphere–ocean feedbacks.

The seasonal cycle in equatorial Pacific surface tempera-

ture is poorly simulated by LOVECLIM. Both the stan-

dard and calibrated models contain large biases. Both

exhibit a biannual cycle in the eastern Pacific and do not

capture the zonal asymmetry in temperature. The addition

of anomaly coupling does not improve the representation

of the annual cycle, though these biases are well known for

other intermediate complexity models and even some

more comprehensive atmosphere–ocean general circula-

tion models (e.g., Timmermann et al. 2007).

To explore the LOVECLIM underlying ENSO dy-

namics and ocean–atmosphere feedbacks, we examine

the cross-correlation structure between Ni~no-3 monthly

FIG. 6. Standard deviations of monthly modeled and observed surface temperature for

(a) the ORA-S3 (1960–2009), (b) the LOVECLIM model calibrated to the observed power

spectrum (see Fig. 4), and (c) the standard version of LOVECLIM. The X in (b) denotes the

center of the anomaly coupling patch.
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surface temperature anomalies and variation in depth of

the 208C isotherm averaged over the entire equatorial

Pacific Ocean (58S–58N, 1208E–908W). The 208C iso-

therm depth is a good indicator of the upper-ocean heat

content, so its cross-correlation with Ni~no-3 surface

temperature provides insight into the model’s ability to

capture the recharge–discharge of the equatorial ocean

heat content (Jin 1997; McPhaden et al. 2006). Com-

parisons of the lagged cross-correlation between Ni~no-3

surface temperature variations and variation of the 208C
isotherm are presented in Fig. 10. The result from the

ORA-S3 reanalysis data for the period 1980–2009 gen-

erally agrees with previous observational analysis

(Meinen and McPhaden 2000), showing a peak cross-

correlation at roughly 7 month lag (equatorial heat

content leading Ni~no-3 SST). When analyzing the more

complete ORA-S3 record (1960–2009), the general

shape of the observed lagged correlation curve is

FIG. 7. Mean surface temperature for (a) the ORA-S3 (1960–2009) and (b) the calibrated

version of LOVECLIM equilibrated to preindustrial atmospheric forcings; (c) difference be-

tween the calibrated and standard versions of LOVECLIM.
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consistent with the latter portion of the record (1980–

2009), though the magnitude of the peak cross-

correlation fromORA-S3 is considerably lower (r; 0.35)

than for the 1980–2009 ORA-S3 record (r ; 0.5) or

the 1980–99 TAO buoy data (r ; 0.7) (Meinen and

McPhaden 2000). The main reason for this discrep-

ancy is that, prior to 1976, ENSO variability was char-

acterized by the westward propagating SST mode that

does not invoke thermocline dynamics (Fedorov and

Philander 2000). Only after 1976 did the thermocline

recharge–discharge mode become more prevalent in

ENSO dynamics, as expressed in the higher correlations

in the TAO dataset and ORA-S3 captured during this

period.

Figure 10 shows that both versions of LOVECLIM

(calibrated and standard model) generally reproduce

the observed lagged correlation between monthly Ni~no-3

surface temperature anomalies and the spatial average

depth anomalies of the 208C isotherm over the equato-

rial Pacific basin, analogous to the equatorial Pacific

warm water volume. Discrepancies arise when com-

paring time series that are of consistent length with the

observations (20 or 50 yr), which raises concerns about

the robustness of the relatively short observational re-

cord when diagnosing ENSO performance in models

(cf. Wittenberg 2009). The lagged correlation structure

is generally equivalent between the standard and cali-

brated versions of LOVECLIM for multicentury time

series (500 yr). Further, agreement between the model

and observations (particularly for negative lags) indi-

cates that the model is reliably and realistically sim-

ulating the recharge–discharge mechanism in both

standard and calibrated versions. However, the close

model–data agreement does not necessarily indicate

improved ENSO-like variability since both calibrated

and standard versions of the model show similar corre-

lation structures.

One of the key elements of the ENSO cycle is the

equatorial Kelvin wave, which is important in initiating

the eastward expansion of water from the western Pa-

cific warm pool. Coarse-resolution B-grid finite differ-

ence models, such as the CLIO3 ocean component in

LOVECLIM, have been shown to robustly simulate

realistic oceanic Kelvin waves (Ng and Hsieh 1994;

Sriver et al. 2013). In analyzing the annual cycle in

equatorial 208C isotherm depths (not shown), we

find that both calibrated and standard versions of

LOVECLIM produce Kelvin waves with realistic phase

speeds, consistent with previous results analyzing

CMIP3 models (Timmermann et al. 2007). The magni-

tude of the zonal redistribution of upper-ocean heat

content associated with these waves is amplified for the

calibrated version of the model, and the relationship

FIG. 8. Mean ocean temperature (color contours) and zonal

currents (black contours) for the equatorial Pacific (averaged be-

tween 28S and 28N) for (a) the ORA-S3 (1960–2009) and (b) the

calibrated version of LOVECLIM equilibrated to preindustrial

atmospheric forcings; (c) difference between the calibrated and

standard versions of LOVECLIM. Black contour intervals are

8 cm s21 in (a) and (b) and 0.5 cm s21 in (c). The red lines in (c)

represent the mean depth of the 208C isotherm for the standard

(solid) and calibrated (dashed) versions of LOVCLIM (note the

difference is almost visually indistinguishable).
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between upper-ocean heat content and surface tem-

perature is illustrated using Hovm€oller diagrams of

a sequence of El Ni~no–La Ni~na cycles over a 15-yr pe-

riod (Fig. 11). Figure 11 provides an illustrative example

of the time-lagged relationship between eastern equa-

torial Pacific surface temperature and thermocline

depth (Fig. 10) in advance of El Ni~no events. Anoma-

lous positive ocean heat content accumulates in the

central–western equatorial Pacific and is redistributed

eastward through initiation of an oceanic Kelvin wave

several months prior to El Ni~no onset. As stated previ-

ously, both versions of LOVECLIMagreewith reanalysis

in generally simulating lagged correlation structure be-

tween Ni~no-3 surface temperature and upper-ocean

heat content, with positive ocean heat content anom-

alies leading positive Ni~no-3 surface temperature

anomalies by ;7 months. The calibrated version of

LOVECLIM substantially amplifies the magnitude of

this mechanism, thus contributing to more realistic

ENSO-like variability as quantified by Ni~no-3 surface

temperature variability.

The positive Bjerknes feedback and negative heat

flux feedback are important metrics for diagnosing

ENSO in models. These feedbacks can be quantified

through linear regressions of Ni~no-3 surface temperature

anomalies and Ni~no-4 zonal wind anomalies (Bjerknes

feedback) or Ni~no-3 surface heat flux anomalies (heat

flux feedback). The slopes of these regressions define the

magnitude of the feedbacks (m: Bjerknes; a: heat flux).

Recent model studies and intercomparisons have shown

that these feedbacks can be very important in assessing

ENSO performance in climate models (Guilyardi et al.

2009a; Lloyd et al. 2009, 2011). We diagnose these feed-

backs for the standard and calibrated versions of

LOVECLIM in Fig. 12, which shows scatterplots of

monthly Ni~no-3 surface temperature anomalies and

Ni~no-4 wind zonal wind stress anomalies (Bjerknes

feedback) and Ni~no-3 heat flux anomalies (heat flux

feedback). We find partially compensating influences of

these feedbacks in the calibrated version of LOVECLIM

in that the magnitude of the negative heat flux feedback

is reduced along with the magnitude of the positive

Bjerknes feedback. Further, the calibrated version of

LOVECLIM exhibits some nonlinearity between Ni~no-3

surface temperature anomalies and Ni~no-3 heat flux

anomalies. The nature of these effects is currently be-

ing investigated in a larger perturbed physics ensemble

and is beyond the scope of this paper. Though the mag-

nitude of the Bjerknes feedback is reduced in the

calibrated model, the correlation between Ni~no-3 sur-

face temperature anomalies and Ni~no-4 zonal wind stress

anomalies is substantially improved. This is further

FIG. 9. Longitude–time plots of the annual cycle of surface temperature anomalies in the equatorial Pacific relative to the long-term

mean for (a) the ORA-S3 (1960–2009), (b) the calibrated version of LOVECLIM equilibrated to preindustrial atmospheric forcings, and

(c) the difference between the calibrated and standard versions of LOVECLIM. LOVECLIM surface temperatures are from the at-

mosphere component model.
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illustrated by the spatial structure of correlation be-

tween Ni~no-3 surface temperature anomalies and zonal

surface wind stress anomalies (Fig. 13), which shows an

increase in correlation in the central/western tropical

Pacificmore consistent with diagnoses of reanalysis data.

The increase in the heat flux feedback and reduction

in theBjerknes feedback for the calibrated LOVECLIM

(Fig. 13) is indicative of a more general relationship

between these feedbacks and the amplitude of Ni~no-3

surface temperature variability within the entire en-

semble (Fig. 14). We find the model exhibits a negative

linear relationship between the Bjerknes feedback and

ENSO amplitude and a positive linear relationship be-

tween the heat flux feedback and ENSO amplitude,

across the entire ensemble. Enhancing the Ni~no-3 sur-

face temperature variability is associated with a re-

duction in the magnitude of the positive Bjerknes

feedback, but the spatial correlation structure between

Ni~no-3 surface temperature and zonal surface wind

stress is improved. These relationships between feed-

backs and ENSO amplitude are generally consistent

with previous results frommodel intercomparisons (e.g.,

Lloyd et al. 2009), except model intercomparisons ana-

lyze variations due to different model structures

(CMIP3), whereas here we are analyzing parametric

variations within the same model. Disentangling the

effect of structural versus parametric uncertainties is

difficult and beyond the scope of this paper. However,

the insensitivity of the Ni~no-3 surface temperature

variability to the Bjerknes feedback in the LOVECLIM

ensemble points to relatively weak ocean–atmosphere

coupling. These results suggest that the improved

ENSO-like variability is primarily an atmospheric re-

sponse in the calibratedmodel and not a coupled ocean–

atmosphere phenomenon (Clement et al. 2011). This

point is reinforced by the similarities in the lagged-

correlation structure between Ni~no-3 surface tempera-

ture and upper-ocean heat content (Fig. 10) for the

calibrated and standard versions of themodel.While the

correlation structure for both versions agrees closely

with observations, the ocean recharge–discharge mech-

anism in the model is relatively insensitive to the addi-

tion of anomaly coupling. While the main focus of the

current paper is to provide details and results of an

ENSO calibration experiment using a flexible inter-

mediate climate model, the findings presented here may

provide insights that can guide the development of new

perturbed physics ensembles sampling both parametric

and structural uncertainties for diagnosing mechanisms

important for ENSO.

6. Caveats

Our methodology includes several simplifying as-

sumptions. One caveat is that the anomaly coupling

amplifies the local surface temperature (in the applied

patch region) as seen only by the atmosphere and not by

the ocean. The immediate effect on the local ocean SST

is to damp the anomaly through surface flux responses to

restore equilibrium at the air–sea interface. Thus, any

sustained subsurface ocean response is achieved via

enhanced dynamical feedbacks induced by the atmo-

sphere model. As a result, the major oceanic feedbacks

on eastern equatorial Pacific SST in the ocean model—

such as thermocline depth, upwelling, and zonal advec-

tive feedbacks—are largely driven by atmospheric

processes and dynamical ocean–atmosphere feedbacks,

including local and remote wind forcing, which are

influenced by the anomaly coupling.

An additional caveat relates to uncertainties in our

spectral and time series analyses. In the results pre-

sented in section 4, we compare observed temperature

records from a 50-yr period (1960–2009) with the mean

spectrum of ten 50-yr time slices of model output cor-

responding to equilibrium preindustrial conditions. We

chose to use 50-yr time slices because the length is

consistent with our observation-based product. How-

ever, we also consider multiple time slices in our cali-

bration method because it provides a more robust

ENSOmetric in themodel. In other words, a single 50-yr

time series in not of sufficient length to obtain a robust

model representation of ENSO behavior, given internal

FIG. 10. Lagged cross-correlation between monthly-mean sur-

face temperature anomalies averaged over the Ni~no-3 region

(58S–58N, 1508–908W) and monthly-mean anomalies of the 208C
isotherm depth averaged over the equatorial Pacific (58S–58N,

1208E–908W). The black curves show the observed relationship

derived from the ORA-S3 during the periods 1960–2009 (solid

black) and 1980–2009 (dashed black). Red (blue) curve repre-

sent the calibrated (standard) version of the LOVECLIM model.

LOVECLIM surface temperatures are from the atmosphere

component model, and correlations are calculated using 500-yr

integrations (consistent with Fig. 4). Negative lags indicate that

equatorial Pacific thermocline depth anomalies are leading Ni~no-3

surface temperature anomalies.
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variability within the model (e.g., Wittenberg 2009; Ault

et al. 2013) and interdecadal/intercentennial variability

of ENSO behavior (e.g., Cane 2005; Mann et al. 2005).

The sensitivity of the Ni~no-3 spectrum used in calibrat-

ing the model varies considerably between 50-yr time

slices (Fig. 15). While the location of the spectral peak is

robust, the variance is sensitive to the choice of the av-

eraging interval within the run. Thus, the data–model

calibration may result in a different optimal combination

of anomaly coupling parameters when analyzing dif-

ferent 50-yr intervals. We consider multiple 50-yr in-

tervals in calibrating the model, but we consider only

a single 50-yr interval of observations, and the robust-

ness of this record over longer intervals is not clear. The

methodology presented here does not necessarily as-

sume that the ENSO statistics derived from ocean re-

analysis data over the past 50 years are indicative of

millennial-scale ENSO behavior.

FIG. 11. Longitude–time plots of monthly anomalies of (a) surface air temperature and (b) anomalies of the 208C
isotherm depth, for 15 years of model output from the calibrated version of LOVECLIM. The figures highlight two

distinct El Ni~no–like events occurring in years 3 and 9 of the model simulation and illustrate the lagged relationship

between Ni~no-3 surface temperature anomalies and the thermocline adjustment in the equatorial Pacific.
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The calibrationmethodology and parameter values are

selected primarily for the purposes of the analysis shown

here, and the main goal of this paper is to highlight the

improved representation of ENSO-like variability in

a reduced complexity climate model. However, the pa-

rameter optimization may become physically meaningful

in a formal data–model assimilation experiment, in which

case a careful consideration of spectral uncertainties

would be necessary. These uncertainties could be re-

duced by 1) using a longer observational time series for

calibration, 2) refining the calibration technique to con-

sider spectra from multiple averaging periods during the

data assimilation process through the use of a probabi-

listic representation of the observational constraints, and/

or 3) using transient forcing conditions that are consistent

between the model and observations.

The negative skewness in Ni~no-3 surface temperature in

the calibrated version LOVECLIM provides an additional

caveat. It is a robust feature of the anomaly coupling en-

semble presented here, and the bias increases with ENSO

amplitude. Reducing this bias is important for analyzing

ENSO behavior in the context of climate change, and we

are exploring methods to minimize (or perhaps even re-

verse) the skewness in larger perturbed physics ensembles.

FIG. 12. (left) Scatterplots of monthly Ni~no-3 heat flux anomalies and monthly Ni~no-3 surface air temperature

anomalies for the (top) standard and (bottom) calibrated versions of LOVECLIM (based on 500 years of equilibrated

model output). The slope of the linear regression defines the negative heat flux feedback (a). (right) Scatterplots of

monthly Ni~no-4 zonal wind stress anomalies and monthly Ni~no-3 surface air temperature anomalies for the (top)

standard and (bottom) calibrated versions of LOVECLIM. The slope of the linear regression defines the positive

Bjerknes feedback (m). Values of the feedbacks (regression slopes) and correlations (r) are listed on each plot.
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7. Conclusions

We present a modified version of the LOVECLIM

climate model that improves the representation of trop-

ical Pacific coupled ocean–atmosphere dynamics and,

accordingly, the performance of the resulting interannual

variability in tropical Pacific surface temperature. These

modifications include a new empirical diagnostic cloud

scheme and an anomaly coupling technique that amplifies

diabatic atmospheric forcing at the surface in the equa-

torial tropical Pacific. We find that the modifications im-

prove the representation of the large-scale temperature

patterns and variability in the tropical Pacific. When the

anomaly coupling is calibrated to observations, the model

generally reproduces the characteristics of the observed

spectrum of Ni~no-3 surface temperature variability

(frequency range and variance). Furthermore, sensitivity

analysis of the anomaly coupling parameterizations pro-

vides some insights to the model’s representation of

multiple ocean–atmosphere mechanisms important for

understanding the underlying ENSO physics, such as the

recharge–discharge mechanism, the positive Bjerknes

feedback, and the negative heat flux feedback. Overall,

the calibrated LOVECLIM robustly reproduces some

observed ENSO characteristics. However, it also exhibits

weak ocean–atmosphere coupling, and, as a result, the

ENSO-like variability is largely an atmospheric phe-

nomenon. The calibrated model compares well with

more comprehensive state-of-the-art CMIP5 models in

simulating the observed Ni~no-3 spectrum of surface

temperature anomalies, while it still exhibits biases in

Ni~no-3 skewness and limitations in simulating a realistic

seasonal cycle of tropical Pacific surface temperature.

Specifically, the simulated Ni~no-3 surface temperature

time series is negatively skewed, while the observed time

series is positively skewed, and the magnitude is twice

that of the observations. Further, the simulated annual

cycle of tropical surface temperature does not capture

zonal asymmetries and incorrectly exhibits a biannual

cycle in the central-to-eastern Pacific regions. Given the

reduced complexity and tractability of LOVECLIM, the

results shown here highlight the usefulness of the model

for research efforts focusing on assimilation of tropical

FIG. 13. Correlation between monthly zonal wind stress anom-

alies and monthly surface air temperature anomalies, averaged

between 58S and 58N, for ERA-40 from 1961 to 2000 (dashed black

curve) and the calibrated (red curve) and standard (blue curve)

versions of LOVECLIM.

FIG. 14. Scatterplots of the standard deviations of monthly Ni~no-3 surface air temperature anomalies and (a) the

Bjerknes feedback (m) and (b) heat flux feedback (a) for the entire LOVECLIM anomaly coupling ensemble. Each

point in (a) and (b) represents a different ensemble member corresponding to a unique combination of anomaly

coupling parameters.
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Pacific paleo-information, parameter estimation, and

uncertainty quantification.
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