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Abstract. Detecting the direction and strength of the causal-
ity signal in observed time series is becoming a popular tool
for exploration of distributed systems such as Earth’s climate
system. Here, we suggest that in addition to reproducing ob-
served time series of climate variables within required accu-
racy a model should also exhibit the causality relationship
between variables found in nature. Specifically, we propose
a novel framework for a comprehensive analysis of climate
model responses to external natural and anthropogenic forc-
ing based on the method of conditional dispersion. As an il-
lustration, we assess the causal relationship between anthro-
pogenic forcing (i.e., atmospheric carbon dioxide concentra-
tion) and surface temperature anomalies. We demonstrate a
strong directional causality between global temperatures and
carbon dioxide concentrations (meaning that carbon diox-
ide affects temperature more than temperature affects carbon
dioxide) in both the observations and in (Coupled Model In-
tercomparison Project phase 5; CMIPS5) climate model sim-
ulated temperatures.

1 Introduction

The standard approach to attribution of observed global
warming employs experiments with climate models. Such
“detection and attribution” approaches (e.g., Stocker, 2014)
attempt to reproduce observed trends under different exter-
nal forcing conditions and demonstrate a consistency (or
its absence) of simulated climate changes with instrumen-

tal observations. A substantial body of detection and attri-
bution studies (e.g., Santer et al., 2009, 2012; Jones et al.,
2013) spanning the past two decades demonstrates that an-
thropogenic increases in atmospheric carbon dioxide are very
likely the cause of the observed global temperature increase
since the mid-19th century. Semi-empirical approaches that
combine information from model simulations and observa-
tions have also proven useful for investigations of modern
climate change attribution. Previous work (e.g., Mann et al.,
2017) has employed estimates of natural variability derived
from a combination of historical simulations and observa-
tions to attribute the sequence of record-breaking global tem-
peratures in 2014, 2015 and 2016 to anthropogenic warming
by demonstrating that this sequence had a negligible likeli-
hood of occurrence in the absence of anthropogenic warm-
ing. Direct investigations of the causal relationship between
climate system variables using statistical tools have recently
become more common. The most simplistic approach, the
Pearson correlation between two time series, which is often
mentioned in the context of causality, does not really mea-
sure the causality. While statistically significant correlation
quantifies similarity between time series, it does not imply
a causality resulting from physical relationships between the
natural processes that are expressed by the time series and
that can be modeled using differential equations. Instead,
it provides a statistical test of a hypothesis that describes a
physical link between the two variables (i.e., expressed as
time series) without actually testing either the direction of
causality or the plausibility of the physics underlying the hy-
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pothesis. The breakthrough Granger developments (Granger,
1969) provided a foundation for several causality-measuring
techniques based on different hypotheses of data origin. The
requirement of the cause leading the effect (but not vice
versa) defines the direction of a causal link if a more general
hypothesis of lagged linear connection between noisy autore-
gressive processes is assumed. Though this hypothesis leads
to statistically significant estimates of climate response to the
forcing input (e.g., Kaufmann et al., 2006, 2011; Attanasio,
2012; Attanasio et al., 2012; Mokhov et al., 2012; Triacca et
al., 2013), it may not be able to reliably detect the direction
of causality in the climate system because the potential for
non-linearities in the climate system (leading to extreme sen-
sitivity to initial conditions, i.e., deterministic chaos) is not
taken into account. For example, Palus§ et al. (2018) demon-
strated that coupled chaotic dynamical systems can “violate
the first principle of Granger causality that the cause pre-
cedes the effect.”” The Shannon information flow approach
expands Granger causality to non-linear systems, using trans-
fer entropy as a causality measure. Barnett et al. (2009) have
shown that transfer entropy is equivalent to Granger causal-
ity for Gaussian processes. The transfer entropy between two
probability distributions is typically considered the most gen-
eral approach for causality detection, and numerous modifi-
cations of transfer-entropy-based causality-measuring tech-
niques have been developed for different applications (Pearl,
2009), including causality measurements of global warming
(e.g., Stips et al., 2016). It should be noted though that all
probability-based causality measures require long time se-
ries to calculate statistical distributions and may lack ap-
plicability to local climate due to high inhomogeneity and
non-stationarity of the data (e.g., O’Brien et al., 2019). The
prediction improvement approach is often considered as a
generalization of Granger causality for non-linear systems
(e.g., Krakovskd and Hanzely, 2016). It is highly practical
and, besides causality calculations, it may help to improve
the prediction accuracy. For pure causality purposes, how-
ever, it adds an additional uncertainty because the causal-
ity may depend on the chosen prediction method. The con-
vergent cross-mapping approach (Sugihara et al., 2012; Van
Nes et al., 2015) has been recently designed to work with
relatively short data series, thus addressing the major con-
straint of transfer-entropy approach. The background hy-
potheses of the method is more narrow and includes only
non-linear dynamical systems, though convergent cross map-
ping remains applicable to most natural systems in ecology
and geosciences (Sugihara et al., 2012). The approach con-
siders conditional evolution of nearest neighbors in the re-
constructed Takens’ space, so it is sensitive to the noise and
may not be applicable to a wide range of timescales. More-
over, Palus et al. (2018) have shown that convergent cross
mapping is not capable of determining the directionality of a
causal link. Therefore, identification of specific causal effect
measures for climate observables is still a challenge. When
causal effect measures are identified, the graph theory could
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be employed for further analysis of multiple causality chains
(Hannart et al., 2016; Runge et al., 2015). Along with dimen-
sionality reduction formalism (e.g., Vejmelka et al., 2015), it
may lead to a promising general approach.

For our case study, we advocate the method of condi-
tional dispersion (MCD) developed by Cenys et al. (1991)
as a causal effect measure. It has also been designed for non-
linear systems and exploits the asymmetry of the conditional
dispersion of two variables in Takens’ space along all avail-
able scales. Therefore, it remains more general and noise re-
sistant than convergent cross-mapping techniques and more
general than prediction improvement approaches because it
is insensitive to the choice of the prediction method. We
propose here to employ the MCD-based causality measure-
ments for a comprehensive analysis of climate model re-
sponses to external natural and anthropogenic forcing. While
climate models have, in a rough sense, been tuned to repro-
duce the observational record, their predictions differ from
the observations due to various types of errors and uncertain-
ties. These include (a) measurement errors in external forcing
(e.g., greenhouse gas concentrations, land use, solar variabil-
ity) used to drive the models; (b) errors in the representa-
tion of physical processes in the models (e.g., ocean circu-
lation, cryosphere and biosphere processes, various feedback
mechanisms) and incomplete representation of the Earth sys-
tem (i.e., in many cases a lack of representations of dynamic
vegetation responses or the oceanic carbon cycle); (c) er-
rors associated with internal variability in the climate sys-
tem — for example, models may accurately represent the
El Nifio—Southern Oscillation (ENSO), but ENSO is an in-
herently random process and models therefore do not, and
should not, reproduce the actual real-world realization of
that random process; (d) errors and uncertainties in obser-
vational data — for example, surface temperature measure-
ments contain uncertainty due to the irregular sampling in
space and time (e.g., lack of data at higher latitudes increas-
ingly back in time). In addition, there is the potential for
biases, for example, due to changes in oceanic and terres-
trial measurement platforms over time (e.g., bucket measure-
ments vs. intake valves for ocean seawater measurements,
or residual urban heat island biases in land-based tempera-
ture measurements). Such sampling uncertainties might lead
to a model-observational data mismatch that is unrelated to
model performance. The challenge, then, is to determine the
best-performing models when all models reproduce the ob-
servations similarly well. We believe that in addition to re-
producing observed time series of climate variables, a model
should exhibit the causality relationship between variables
found in nature. Since the MCD approach is based on the
assumption that each time series is produced by a hypothet-
ical low-dimensional system of dynamical equations, simi-
larity of causal relationships in both model and observations
speaks to the similarities of their parent systems.

Accordingly, our paper is structured as follows. First, we
will briefly describe the method of conditional dispersion.
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We will illustrate it with several numerical experiments that
investigate the causal relationship between surface tempera-
ture anomalies for the Northern Hemisphere and atmospheric
carbon dioxide concentration measurements. We will show
that the causality between carbon dioxide and temperature
anomalies is a directional causality, meaning that carbon
dioxide affects temperature more than temperature affects
carbon dioxide. We will then demonstrate that this direc-
tional connection cannot be replicated with an independent
trend and red noise.

2 A glimpse into the method of conditional dispersion

The MCD approach has been designed for measuring causal-
ity between two time series. It is assumed that each time
series is a variable produced by its hypothetical low-
dimensional system of dynamical equations. The variables
contain information about the dynamics of hypothetical par-
ent systems which can be reconstructed using Takens (1981)
procedure. Since each of the variables can be used to recon-
struct the original parent system manifold, there is one-to-
one correspondence between them. Specifically, if points of
one time series are close, the synchronous points of another
variable are close as well. Therefore, if two variables (# and
x) do not belong to the same or coupled dynamical systems,
or in other words, they are independent, then the distance
from a reference point to its neighbors of one variable (u)
does not depend on the distance (¢) between synchronous
points of another variable (x). In the case of dependency,
though, the distance between neighboring points of the con-
trollable variable will be smaller when the distance between
points of the driving variable is reduced. Therefore, the de-
pendence of the conditional dispersion o (¢) of the variable u
upon the distance ¢ between points of the variable x becomes
a signature of causal relationship between u and x (Cenys et
al., 1991):
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Here, M is the dimension of the reconstructed manifold,
and ® is the Heaviside function. If variable u is indepen-
dent from variable x, its conditional dispersion a)ﬁ‘;’ (e) does
not depend upon ¢. If variable x is the cause of u variabil-
ity, then conditional dispersion of the variable u will decline
for diminishing ¢. As an illustration, we show in Fig. 1 the
conditional dispersion of two variables (x and u) of coupled
Hénon (1976) maps:
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Figure 1. The conditional dispersion of coupled dynamical vari-
ables u and x as described by Egs. (2)—(3). When the connection is
one directional (¢ =0, g =0.3), i.e., x is the cause of u but is inde-
pendent of u, the conditional dispersion of the x variable does not
depend on ¢, but conditional dispersion of the u variable declines
for diminishing &. When the connection is two directional (¢ = 0.1,
B =0.3), the conditional dispersion of both variables declines for
smaller ¢, but the x variable, which provides a stronger causal force,
has a dispersion with weaker slope.

{unH =14v, — L.4u,u, 3)

V1 =0.3u, + B(yn — vp)

Here, variables u and x belong to two dynamical subsys-
tems, Eqgs. (2) and (3). The interdependence of these sub-
systems is defined by coefficients & and 8. When the con-
nection is one directional (for example, « =0, 8 = 0.3), i.e.,
x is the cause of u but is independent of u, the conditional
dispersion of the x variable does not depend on ¢ (where ¢
is the distance between synchronous points of #) but con-
ditional dispersion of the u variable declines for diminish-
ing & (where ¢ is the distance between synchronous points
of x). When the connection is two directional (for example,
o =0.1, B =0.3), the conditional dispersion of both vari-
ables declines for smaller ¢, but a variable which provides
a stronger causal force (i.e., x) has a dispersion with a less
articulated slope. When variables are equally interdependent
(i.e., synchronized), the conditional dispersions of both vari-
ables may have the same slope.

The results presented in Fig. 1 are based on a 4000-data-
point calculation. If we reduce the number of data points to
~ 150, the results qualitatively remain the same.

Geosci. Model Dev., 12, 4053-4060, 2019



4056 M. Y. Verbitsky et al.: Detecting causality signal in instrumental measurements and climate model simulations

3 The case study of global warming causality

We will now employ the MCD approach in three numerical
experiments for time series of atmospheric carbon dioxide
concentration and surface temperature obtained from both
direct instrumental measurements and model simulations.
Since we now advance from a discrete attractor to measured
and simulated time series, some assumptions need to be artic-
ulated. Indeed, despite the fact that numerous methods have
been developed to better determine an embedding dimension
(e.g., Abarbanel et al., 1993), it is still a challenge to deter-
mine embedding from a measured variable (such as temper-
ature) because time series always have limited length and are
corrupted with noise that can be misinterpreted as a higher
dimension. We will treat the climate variables the same way
as Hénon attractor variables (with evaluation “a la” Takens
embedding, dimension 7). Fortunately, as it has been shown
by Cenys et al. (1991), the MCD method is not very sensitive
to the embedding dimension, and the slope of o (¢) curves in-
creases only slightly with the increase of the dimension. We
will use a hypothesis that Northern Hemisphere temperature
is an observable of the global climate system, and the CO,
concentration is an observable of the system of external forc-
ing. An observable may not necessary have a straightforward
connection to (“hidden”) physical variables of the underly-
ing system. The embedding theorem (e.g., Sauer et al., 1991)
states that reconstructed space is topologically equivalent to
the underlying system in the sense that there exists a contin-
uous differentiable transform from reconstructed to hidden
space.

3.1 Detecting causality in instrumental measurements

First, we investigate the causal relationship between GIS-
TEMP (Hansen et al., 2006) surface temperature assessments
for the Northern Hemisphere and atmospheric carbon diox-
ide concentration measurements (CO2 NASA GISS Data,
2016) spanning 1880 through 2016. For this purpose, we
normalize the CO;, and temperature time series by subtract-
ing their mean values and by dividing over the standard de-
viation; we then calculate conditional dispersion of North-
ern Hemisphere temperature variability (as a function of dis-
tance & between synchronous points of the carbon dioxide
time series) and conditional dispersion of carbon dioxide (as
a function of distance ¢ between synchronous points of the
temperature time series). Any trends present in the data are
preserved so as to avoid needless additional assumptions re-
garding the nature and origin of these trends.

It can be seen in Fig. 2 that surface temperature and carbon
dioxide are interdependent systems (the conditional disper-
sions of both variables depend upon ¢). Nevertheless, carbon
dioxide is the causal force of global warming because the de-
pendence of the temperature conditional dispersion upon &
is much stronger than the same dependence of carbon diox-
ide conditional dispersion. When interpreting MCD results,
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it is important to remember that we are dealing with rela-
tively short time series that contain strong linear trends. We
will show in Sect. 4 that the o (¢) slope can deviate signifi-
cantly from the horizontal line because of linear correlation
introduced by a trend, even in the case of completely inde-
pendent time series. Therefore, it is not the absolute value of
a slope but, instead, the difference (the “distance”) between
two slopes that speaks about the direction of causality.

3.2 Detecting causality in model simulations:
anthropogenic and natural (volcanic and solar)
forcing

We now apply MCD to the model simulations adopted
from the Coupled Model Intercomparison Project phase 5
(CMIP)) historical simulation experiments (Stocker, 2014).
Estimates of the total forced component of Northern Hemi-
sphere mean temperature have been derived by averaging
over the full ensemble of CMIP5 multimodel all-forcing his-
torical experiments (Mann et al., 2014, 2017; Steinman et al.,
2015). We generated 50 temperature series surrogates using a
Monte Carlo resampling approach of Mann et al. (2017) and
calculated conditional dispersion of Northern Hemisphere
temperature variability for each of the 50 surrogates (as a
function of distance ¢ between synchronous points of car-
bon dioxide time series) and conditional dispersion of carbon
dioxide (as a function of distance ¢ between synchronous
points of every surrogate time series). In all experiments,
we used the same atmospheric carbon dioxide concentration
measurements (CO2 NASA GISS Data, 2016). We assume
therefore that the effect of the surface temperature on CO;
concentration has been naturally included in the CO; time
series.

In Fig. 3, it can be seen that the behavior of dispersions de-
rived from multiple simulations’ surrogates is quantitatively
close to the dispersions obtained from the direct measure-
ments and therefore that carbon dioxide is the driver of tem-
perature changes in the model simulations. Though in this
experiment we applied MCD-testing network to the full en-
semble of CMIP5 models, the same procedure can be applied
to any sub-ensemble or to individual models if the task is to
identify the models that are more consistent with the instru-
mental data in terms of causality.

3.3 Detecting causality in model simulations:
anthropogenic forcing only

We repeat the analysis described in Sect. 3.2 but for a sep-
arate ensemble of anthropogenic-only forcing experiments
(Stocker, 2014; Mann et al., 2016a, b, 2017).

Interestingly, the results of the analysis change mini-
mally when natural forcing (volcanic and solar) is excluded
(Fig. 4), which implies the dominant causality role of carbon
dioxide.

www.geosci-model-dev.net/12/4053/2019/
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Figure 2. (a) GISTEMP (Hansen et al., 2006) surface temperature anomalies and atmospheric carbon dioxide concentration measurements
(CO2 NASA GISS Data, 2016); (b) conditional dispersion of instrumental measurements. The black curve is the conditional dispersion of
the carbon dioxide concentration. The green curve represents conditional dispersion of Northern Hemisphere temperature anomalies; its
dependence on ¢ is much stronger than that of the black curve, indicating that carbon dioxide is the cause of temperature changes.
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Figure 3. Detecting causality in model simulations. Anthropogenic and natural (volcanic and solar) forcing. (a) Surrogates of model temper-
ature deviations induced by both natural and anthropogenic forcing together with carbon dioxide concentration measurements (CO2 NASA
GISS Data, 2016). (b) Conditional dispersion of the Northern Hemisphere temperature and carbon dioxide concentration. The black curve is
the conditional dispersion of the carbon dioxide concentration instrumental measurements; the green curve represents conditional dispersion
of the Northern Hemisphere temperature measurements (same as in Fig. 2b). The blue crosses are the mean of 50 multimodel surrogates’
conditional dispersions of the Northern Hemisphere temperature; small black dots are the mean of 50 multimodel surrogates’ conditional
dispersions of carbon dioxide. Bars represent doubled standard deviation.

4 Testing boundaries of MCD applicability

Initially, the MCD approach was applied to causality mea-
surements between deterministic chaotic time series (Cenys
et al., 1991). In this study, we expand its applicability to a
situation where one of the time series (CO») is essentially a
regular trend, and the history of observations for both CO;
and temperature is relatively short. In the next experiment,
we will test boundaries of MCD applicability and investigate

www.geosci-model-dev.net/12/4053/2019/

if the MCD approach can distinguish between interdepen-
dent processes, like CO; and temperature, and independent
but highly autocorrelated processes. For this purpose, we cal-
culate conditional dispersion for two independent but highly
autocorrelated time series resembling properties of carbon
dioxide series and temperature surrogates. For the carbon
dioxide “role”, we selected a linear trend. GISS temperature
surrogates were replaced by 50 red noise surrogates. Results
of the conditional dispersion calculations are shown in Fig. 5.
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Figure 5. Conditional dispersion of two independent processes having high autocorrelations. (a) Example of one-lag autocorrelated (0.92)
red noise series simulating statistical properties of GISS temperature record and a linear trend; (b) average conditional dispersion of 50 red

noise surrogates. Error bars mark doubled standard deviation.

This example shows that, for relatively short time series,
MCD is unable to discriminate between cases of indepen-
dence and very strong interdependence (i.e., synchroniza-
tion) because spontaneous local correlations may be induced
with autocorrelated red noise, leading to the same slope of
conditional dispersions for both time series. Nevertheless,
unlike natural (CO; and temperature) time series, these cor-
relations are not able to induce any directional causality. In
other words, were temperature and CO; equally interdepen-
dent, MCD would not be able to distinguish this situation
from independent trends and red noise. In reality though,
both on the Quaternary and historical (i.e., current climate
change) timescales, CO; and temperature display directional
(albeit, different) causality. Specifically, temperature leads
carbon dioxide on the orbital timescales (e.g., Van Nes et al.,

Geosci. Model Dev., 12, 4053-4060, 2019

2015), but as we have demonstrated above, carbon dioxide
is causally implicated for contemporary warming. This di-
rectional causality cannot be replicated with a trend plus red
noise, confirming that the results presented in Figs. 2—4 are
not artifacts of noise.

5 Conclusions

In this study, we propose an additional climate model vali-
dation procedure that assesses whether causality signals be-
tween model drivers and responses are consistent with those
observed in nature. Specifically, we suggest the method of
conditional dispersion (MCD) as the best approach to di-
rectly measure the causality between model forcing and re-
sponse. As an illustration of MCD applicability, we detect the

www.geosci-model-dev.net/12/4053/2019/
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causality signal between atmospheric carbon dioxide con-
centration and variations of global temperature. Our results
suggest that there is a strong causal signal from the carbon
dioxide series to the global temperature series or, in other
words, that carbon dioxide is the principal cause of global
warming. This conclusion is applicable to both direct in-
strumental measurements and multimodel temperature se-
ries surrogates. The strength of the causality signal does not
significantly change when the additional contribution from
natural factors (such as solar and volcanic) are accounted
for, implying that increases in carbon dioxide are the main
driver of observed warming. It is noteworthy that the causal-
ity between carbon dioxide and temperature anomalies is
a directional causality: carbon dioxide affects temperature
more than temperature affects carbon dioxide. This direc-
tional connection cannot be replicated using simplistic sta-
tistical models for the observed temperature increase (an in-
dependent trend and red noise).

Indeed, only laws of physics may identify the mechanism
of causality, and therefore the causality is encoded in the
differential equations of the mathematical models. Unfor-
tunately, high uncertainty in natural forcing (e.g., Egorova
et al., 2018) may be amplified by model uncertainties (e.g.,
Meehl et al., 2009), and despite the fact that multiple meth-
ods exist to detect causality in the data, none are perfect for
the analysis of complex systems such as Earth’s climate (Mc-
Cracken, 2016). Therefore, a properly calibrated causality
detection method like MCD, despite its simplicity (i.e., its
basis in dynamical-systems theory), may help to reduce these
uncertainties in quantifying the climate response to differ-
ent forcings by providing new data-driven constraints. With
our calculations, we calibrate MCD against existing mea-
surements and simulations. As long as MCD is trusted as an
insightful approach, it can be used for express testing of new
models and, perhaps more importantly, can serve as a first
test for any new external forcing candidate that may be con-
sidered as an alternative or supplement to CO;.

Code and data availability. The MATLAB source code and data
(Verbitsky et al., 2019) are available at https://zenodo.org/record/
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tested under MATLAB version R2015b (last access: 25 March
2019).
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