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Abstract: We describe an alternative method of climate field reconstruction and test it against an exist-

ing set of dendroclimatic reconstructions of summer drought patterns over the conterminous US back

to AD 1700. The new reconstructions are based on a set of 483 drought-sensitive tree-ring chronologies

available across the continental US. In contrast with the ‘point-by-point’ (PPR) local regression tech-

nique used previously, the tree-ring data were calibrated against the instrumental record of summer

drought (June�August Palmer Drought Severity Index (PDSI)) based on application of the ‘Regular-

ized Expectation Maximization’ (‘RegEM’) algorithm to relate large-scale patterns of variation in

proxy and instrumental data over a common (twentieth century) interval. A screening procedure

was first used to select an optimal subset of candidate tree-ring drought predictors, and the predictors

(tree-ring data) and predictand (instrumental PDSI) were prewhitened prior to calibration, with serial

correlation added back into the reconstruction at the end of the procedure. The PDSI field was sepa-

rated into eight relatively homogenous regions of summer drought through a cluster analysis, and

three distinct calibration schemes were investigated: (i) ‘global’ (i.e., entire conterminous US domain)

proxy data calibrated against ‘global’ PDSI; (ii) regional proxy data calibrated against regional PDSI;

and (iii) global proxy data calibrated against regional PDSI. The greatest cross-validated skill was evi-

dent for case (iii), suggesting the existence of useful non-local information in the tree-ring predictor

set. Cross-validation results based on withheld late nineteenth=early twentieth-century instrumental

data, as well as a regionally limited extension of cross-validation results back to the mid-nineteenth

century based on long available instrumental series, indicate a modest improvement in reconstructive

skill over the PPR approach. At the continental scale, the 1930s ‘Dust Bowl’ remains the most severe

drought event since 1700 within the context of the estimated uncertainties, but more severe episodes

may have occurred at regional scales in past centuries.
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Introduction

Droughts and floods can be among the most devastating of
climate-related natural hazards facing the United States. The

‘Dust Bowl’ droughts of the 1930s and 1950s, which, at their
most severe, covered 70% of the conterminous US and
persisted for 5�7 years at a time, incurred an estimated cost
of $39 billion, including losses in energy, water resources,
ecosystems and agriculture (Riebsame et al., 1991). It is thus
of critical importance to determine the likelihood of such�Author for correspondence (e-mail: zz9t@virginia.edu)
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droughts occurring in the future. More generally, it is important
to estimate the natural frequency and intensity of extended
drought, and the possible impacts of climate change on patterns
of continental drought. Interannual and decadal variability in
drought patterns over the US is subject not only to the influence
of patterns of large-scale climatic variability associated with the
El Ni~nno-Southern Oscillation (ENSO), and North Pacific (NPO)
and North Atlantic (NAO) oscillations (e.g., Rajagopalan
et al., 2000), but also possible natural external forcing
(Mitchell et al., 1979; Cook et al., 1997). Climate change, more-
over, may have altered patterns of hydroclimatic variability in
the United States during the late twentieth century (e.g., Karl
and Knight, 1998; Karl et al., 1996). It is thus unlikely that
the temporal and spatial patterns of drought recorded in the
relatively short instrumental record of the past 100 years are
adequate to characterize the full potential range of drought
(e.g., Woodhouse and Jonathan, 1998). It is therefore essential,
in placing modern drought in an appropriate long-term
context, to make use of the more limited information available
to reconstruct drought patterns in past centuries.

The most promising reconstructions of past continental
drought have employed proxy climate data, and, in particular,
tree-ring or ‘dendroclimatic’ indicators which offer the hydro-
logical sensitivity, spatial availability and annual resolution
necessary to reconstruct large-scale patterns of drought (see,
for example, D’Arrigo and Jacoby, 1991; Fritts, 1991; Hughes
and Brown, 1992; Stahle and Cleaveland, 1992; Graumlich,
1993; Meko et al., 1993; Hughes and Graumlich, 1996; Cook
et al., 1999). Employing 425 potentially drought-sensitive
tree-ring chronologies across the United States as candidate
predictors, Cook et al. (1999) demonstrated the ability to skil-
fully reconstruct the Palmer Drought Severity Index (PDSI)
over the conterminous United States back to 1700. The
method of reconstruction used, point-by-point regression
(PPR), explicitly assumes that tree-ring chronologies proximal
to a given PDSI gridpoint are most likely to provide successful
predictors of drought for that gridpoint. This approach seems
generally appropriate for characterizing continental drought,
which is often more regional in nature than other purely cli-
mate fields, owing, for example, to the greater influence of land
surface heterogeneity and topography. Given the importance
of large-scale phenomena such as ENSO on large-scale pat-
terns of drought, it is nonetheless likely that the appropriate
use of teleconnected relationships between predictors and pre-
dictand can provide increased skill in reconstructing past
drought patterns.

Methods of climate field reconstruction (CFR) that make
use of nonlocal relationships through the use of large-scale
covariance information (e.g., Smith et al., 1996; Kaplan
et al., 1997) in the calibration of instrumental data against
networks of proxy climate indicators have successfully been
applied to the reconstruction of past large-scale surface
temperature (Mann et al., 1998; 1999; Evans et al., 2002) and
atmospheric circulation (Fritts et al., 1971; Luterbacher et al.,
2002) patterns. In some cases, different methods of CFR yield
quite similar results. For example, Cook et al. (1994) reviewed
and compared two alternative spatial regression approaches to
palaeoclimate reconstruction, orthogonal spatial regression
(OSR) and canonical regression (CR), and concluded that
the differences were, in practice, minor. Differences in recon-
structions resulting from application of different methods
can be more significant, however, when the calibration period
is short, and the methods make different use of large-scale
covariance information within and between predictor fields
(e.g., Schneider, 2001).

Particularly in the limit of a relatively short (i.e., less than
one century) calibration period, weak or unstable climate

teleconnections between proxy and=or instrumental data at
distant spatial scales can potentially limit the utility of methods
of CFR that exploit large-scale correlation structure. The util-
ity of covariance-based CFR approaches represents a delicate
compromise between the incorporation of both potentially
physical and potentially spurious distant statistical relation-
ships in the calibration process. When the calibration period
is short, it may be difficult to separate out real large-scale rela-
tionships between predictor and predictand fields from spuri-
ous ones. Cole and Cook (1998), for example, observed
significant decadal variability in the apparent influence of
ENSO on drought patterns in the United States back through
the late nineteenth century. Indeed, owing to the relatively
local correlation structure of drought and the relatively dense
and homogeneous nature of the continental drought-sensitive
dendroclimatic network such as that used by Cook et al.
(1999), the problem of continental drought reconstruction
from such a network presents a useful challenge for establish-
ing the relative strengths and weaknesses of covariance-based
CFR approaches relative to simpler approaches.

It is thus of considerable interest to see how results based on
the application of covariance-based CFR methods, which
exploit large-scale teleconnected variability, compare in their
apparent level of skill to methods such as PPR which do not
explicitly account for distantly teleconnected variability within
and between predictor and predictand data. It should be noted
that it is indeed possible to generalize the PPR approach
through the incorporation of a regionally adaptive search
radius (see the discussion in Cook et al., 1999) to better accom-
modate larger-scale correlation structure, and such modifica-
tions do appear to yield an improvement in reconstructive
skill (Cook, unpublished data). It can nonetheless be argued
that the use of empirically determined basis functions, as in
covariance-based CFR techniques, is the most natural means
of identifying and making use of large-scale coherent structure
in CFR.

In this study, we employed such a recently proposed method
of CFR (Schneider, 2001) to the problem of reconstructing
PDSI patterns over the conterminous US from a similar den-
droclimatic network to that used by Cook et al. (1999). The
method is based on a regularized expectation maximization
algorithm (RegEM), which offers some theoretical advantages
over previous methods of CFR. This approach calibrates the
proxy data set against the instrumental record by treating
the reconstruction as initially missing data in the combined
proxy=instrumental data matrix, and optimally estimating
the mean and covariance of the combined data matrix through
an iterative procedure which yields a reconstruction of the
PDSI field with minimal error variance (Schneider, 2001;
Rutherford et al., 2003; Mann and Rutherford, 2002). We first
describe the instrumental and proxy data used in the study.
Secondly, we discuss the various strategies for drought recon-
struction taken in this study and the statistical reconstruction
methodologies employed, including data preprocessing and
details of the ‘RegEM’ technique. Thirdly, we measure the
relative skill of the drought reconstructions in the context of
previous reconstructions based on cross-validation results
using withheld late nineteenth=early twentieth-century data,
and fourthly we discuss details of the long-term reconstructions.

Data

We used a version of the 155-point grid (2� lat� 3� long) of
instrumental PDSI data developed by Cook et al. (1999) for
their map correlation and congruency analyses. This gridded
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instrumental data set is based on monthly PDSI records
estimated from state climate division temperature and precipi-
tation data over the period 1895�1995. It differs from the
gridded PDSI data used by Cook et al. (1996; 1999) to recon-
struct past drought from tree rings, which was based on 1036
single-station monthly PDSI records estimated from the His-
torical Climatology Network (HCN) (Karl et al., 1990). While
this difference in predictand data sets does not allow for exact
comparisons of PPR and RegEM performance, calibration
and verification tests using the climate division-based PDSI
data as predictands in PPR were extremely similar to those
described in Cook et al. (1999). The PDSI data used here also
have the advantage of beginning in 1895 at all 155 gridpoints.
In contrast, only 97 of the 155 gridpoints in the PDSI grid
based on single-station records extended back to 1895 (Cook
et al., 1999). As discussed later, it is also possible to extend
the instrumental PDSI data set back to 1870 over a modest
subset of gridpoints based on multivariate regression of the
more recent PDSI data (1895�1995) on long monthly surface
temperature and precipitation data available at a smaller num-
ber of stations in the HCN network.

The Palmer Drought Severity Index (PDSI) was developed
as an integrated measure of moisture balance which closely
approximates the societally relevant notion of drought
(Palmer, 1965). Monthly PDSI, which is related to soil and
runoff conditions, as well as integrated precipitative input,
depends both on current and past monthly precipitation and
temperature values, with varying weight. Because similar
factors dominate the seasonal growth of trees in many regions,
summer (June�August) PDSI patterns appear to be parti-
cularly amenable to reconstruction from tree-ring information
(see Cook et al., 1996; 1999).

For purposes described later, we subsequently divided the
PDSI field into a small number of apparently homogeneous
regions of drought (Figure 1) based on application of a cluster
analysis to the 1895�1978 PDSI gridpoint data used for cali-
bration of the dendroclimatic indicators. An additional classi-
fication based on the 1928�1978 interval used for calibration
in the cross-validation exercises yields essentially the same
regions, with only three marginal gridpoints observed to shift
regions. An independent analysis based on patterns of corre-
lation between neighbouring gridpoints as an estimate of
boundaries between core regions yielded essentially the same
boundaries between core regions. Our classification into (eight)
homogeneous regions, moreover, agrees closely with the sum-
mer drought varimax factors for the US as identified by Cook
et al. (1999) over the interval 1913�1978, with region 1 corre-
sponding well with varimax factor 6, region 2 with factor 8,

region 3 with factor 4, region 4 with factor 7, region 5 with fac-
tor 1, region 6 with factor 2, region 7 with factor 5 and region 8
with factor 3 (varimax factor 9 in Cook et al., Figure 9, indi-
cates a domainwide drought pattern, and thus has no counter-
part in the cluster analysis). These comparisons establish the
robustness of our classification of regions of homogenous
drought variability over the conterminous US.

We used a network of 483 tree-ring chronologies available
over the conterminous United States as candidate predictors
in the subsequent dendroclimatic PDSI reconstructions. This
network (Figure 2) represents a modest expansion of the
network of 425 chronologies used by Cook et al. (1999), but
subsequent analyses show little detectable difference in cross-
validation statistics upon inclusion of the additional 58 chron-
ologies. This latter finding is consistent with the expectation
that the few (i.e., eight or so as estimated above) effective spa-
tial degrees of freedom in conterminous US drought variability
are reasonably saturated by a modest uniformly distributed set
of candidate predictors. All chronologies are available back to
at least 1700. As evident in Figure 2, the network is sparse in
the centre of the continent due to the lack of forest land and
the limits of natural forest communities (see Cook et al., 1996).

As described below, an additional screening procedure
was used to filter the entire network of indicators for those
chronologies most likely to be useful in palaeoclimate
reconstruction.

Methods

Calibration schemes
Three alternative calibration schemes making use of the
RegEM method (see below) were tested in this study. The three
schemes differ in how the selected dendroclimatic drought
indicators (see below) were calibrated against the large-scale
PDSI field, allowing for a variable representation of local
and large-scale relationships between and within the predictor
(proxy) and predictand (gridded instrumental PDSI field) data.
As discussed above, the instrumental PDSI field was classified
into eight distinct roughly homogenous regions of drought,
establishing a natural means of characterizing both ‘regional’
(within one of the eight core regions) and ‘global’ (anywhere
within the conterminous US) domains.

Figure 1 Map of the continental United States showing locations of

the PDSI gridpoints used for drought reconstructions in this study.

The grid spacing is 2� latitude � 3� longitude. The eight homogeneous

regions of discussed in the text are labelled.

Figure 2 Map of locations of the 483 annual tree-ring chronologies

used in this study. All chronologies are available back to 1700, with

some available significantly farther back in time as indicated.
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The first of the three schemes (i) involves the calibration of
‘global’ proxy data against the ‘global’ PDSI field by the sim-
ultaneous calibration of the entire proxy and entire instrumen-
tal PDSI network. The second scheme (ii) involves the
calibration of ‘regional’ proxy data against the ‘regional’
PSDI, through separate application of this process repeatedly
for each of the eight domains, restricting both predictors and
predictand to a given domain during each of eight distinct cali-
brations. The third scheme (iii) involves the calibration of ‘glo-
bal’ proxy data against ‘regional’ PDSI. The interpretation of
these three distinct schemes is clear; the first scheme allows for
large-scale relationships both within and between predictor
and predictand data, and should produce the most skilful
results if both the proxy data and the PDSI field itself both
contain nonlocal, large-scale correlation information. The
second scheme, by contrast, presumes no large-scale relation-
ships either between or within the predictor and predictand
data, and should produce the greatest skill if there is no true
large-scale information between or within the predictor and
predictand data. The third scheme allows for large-scale rela-
tionships within the predictor data and between predictor
and predictand data, but assumes that there is no large-scale
information within the predictand data itself. This scheme
should produce the greatest skill if drought patterns themselves
are regional in nature with no robust large-scale structure, but
the proxy data (through their more complex statistical depen-
dence on climate) themselves contain nonlocal climatic infor-
mation. An example of how such relationships might be
important is that proxies which are sensitive to winter ENSO
influences in the southwestern US (e.g., Stahle et al., 1998)
might contain significant information regarding summer
drought in other regions which experience warm-season ENSO
influences simply through their ability to specify the phase of
the ENSO signal. Changing drought teleconnections over the
twentieth century (e.g., Cole and Cook, 1998), which imply a
potential instability of covariance estimates based on a short
(e.g., twentieth century) period, present a greater problem
for the ‘global versus global’ approach than for the ‘global ver-
sus regional’ approach. The latter approach does not make of
use of the large-scale covariance structures of the short instru-
mental record, but does make use of the large-scale covariance
information in the considerably longer-term proxy data, which
can be more robustly estimated. This ‘global versus regional’
approach is thus more likely to establish the true underlying
spatial relationships between predictor and predictand fields
in the face of interdecadal variability in teleconnection pat-
terns. The relative performance of these three distinct schemes
can help clarify the importance of making use of teleconnected
variability both in the tree-ring network and the PDSI field in
reconstructing past drought patterns.

Candidate predictor selection
Similar to Cook et al. (1999), we employed a screening process
to prefilter the full network of candidate predictors (483 or 425
depending on whether the full network or network equivalent
to that used by Cook et al. was used) for those series most
likely to be useful in climate reconstruction. It was impossible
to employ an identical screening procedure to that used by
Cook et al. (1999) owing to the nonlocal nature of the
(‘RegEM’) CFR method, which contrasts with the local nature
of the ‘PPR’ method used by Cook et al. (1999). Thus, a
variety of alterative screening criteria were explored for
comparison.

For the ‘global versus global’ scheme (i) described above, a
single threshold screening correlation (jRcj) was employed for
including a chronology, based on the requirement that a

chronology exhibit a 95% significant two-sided correlation
with at least one of the PDSI gridpoints in the global domain
(this corresponded to jRcj ¼ .276 for the 51-year (1928�78)
calibration interval used). A more flexible criterion was also
employed in which the threshold value of jRcj was increased
or decreased (equivalent to increasing or decreasing the
required level for significance from 95%) in such a way as to
maximize the global cross-validated resolved variance. This
procedure arguably improves the reconstruction by employing
a more selective subset of indicators. However, the dependence
on the cross-validation results removes the objectivity of the
cross-validation procedure, requiring additional independent
cross-validation exercises (as discussed below) to indepen-
dently establish statistical skill (alternatively, one could make
use of experiments using synthetic networks derived from
coupled model simulations to objectively tune the RegEM pro-
cedure � Rutherford et al., unpublished data). The correlation
thresholds used here for selecting candidate predictors differ
from the one fixed value ultimately selected by Cook et al.
(1999) based on experimenting with a number of thresholds.
In their case, Cook et al. (1999) found that a 90% significance
level threshold, corresponding to jRcj ¼ .240, represented a
near-global optimum.

For the ‘regional versus regional’ and ‘global versus
regional’ schemes (‘ii’ and ‘iii’ respectively) both globally fixed
and regionally variable values of jRcj were employed. In the
first case, a fixed threshold of jRcj ¼ .276 was used to insure
a 95% significant correlation of a given candidate tree-ring ser-
ies with at least one of the PDSI gridpoints within the selected
region, while in the second case a regionally variable jRcj was
selected such that the cross-validated resolved variance was
maximized on a regional basis.

Prewhitening procedure
As the PDSI, by construction, represents a seasonally inte-
grated representation of hydrological balance, PDSI time ser-
ies exhibit considerably greater persistence than time series of
other typical climatic variables (e.g., surface air temperature
or sea-level pressure). It is particularly important, therefore,
to take the serial persistence structure of the time series
explicitly into account. As in Cook et al. (1999), prior to cali-
bration, both the predictors (tree-ring data) and predictand
(instrumental PDSI) were prewhitened. This procedure allows
the potentially differing levels of serial correlation between in-
strumental drought data and drought-sensitive tree-ring chron-
ologies (the latter exhibiting temporal autocorrelation due
both to the serial correlation in drought, and nonclimatic serial
correlation associated with stand dynamics, other nonclimatic
influences on tree growth, and internal physiologically based
feedbacks) to be removed during the calibration process. The
estimated autocorrelation as modelled and removed from the
instrumental PDSI data over the calibration interval is added
back to the reconstructions of the prewhitened PDSI, restoring
the estimated climatic serial correlation of the calibration per-
iod to the final PDSI reconstructions (see Cook et al., 1999). It
is important to keep in mind the potential limitations of such a
procedure. Without further, more involved statistical model-
ling considerations, such a procedure implicitly ‘builds’ the
serial persistence structure of the modern instrumental data
into the entire reconstruction if the time period selected for
estimating the tree-ring prewhitening coefficients predates that
of the instrumental PDSI data. See Meko (1981) and Appendix
A in Cook et al. (1999) for details. In contrast to calibration of
nonprewhitened predictors and predictand, the persistence
structure of the reconstruction is not allowed to change over
time. While a significantly greater share of the calibration
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period variance may be resolved and well verified using pre-
whitened data, possible past changes in the serial persistence
structure of drought cannot be modelled without more work.

Regularized EM (‘RegEM’) algorithm
The regularized EM (RegEM) method employed in this study
(see Schneider, 2001, and references therein) is an iterative
method for estimating missing data through the estimation
of means and covariances from an incomplete data field to
impute missing values in a manner that makes optimal use
of the spatial and temporal information in the data set. When
a reconstruction is sought from proxy data based on cali-
bration against modern instrumental measurements, the com-
bined (proxy-plus-instrumental) data set can be viewed as an
incomplete data matrix, which contains both instrumental data
(PDSI gridpoint values arranged with rows representing the
years and columns representing gridpoints) and proxy data
(tree-ring indices with rows representing the years and columns
representing tree sites). Missing values in this matrix represent
the unknown preinstrumental PDSI gridpoint series, and are
considered as values to be imputed through an iterative infill-
ing of the data matrix which makes use of the covariance infor-
mation between all available (instrumental and proxy) data.
In analogy with conventional palaeoclimate reconstruction
approaches (see, for example, Rutherford et al., 2003), an
effective ‘calibration’ interval can be defined as the time inter-
val over which the proxy and instrumental data overlap, while
a ‘verification’ interval is defined by additional cross-validation
experiments in which an appropriate subset of the available in-
strumental data are withheld from the process (e.g., through
their specification as missing values in the initial matrix).
Schneider (2001) provides a detailed description of the regular-
ized EM algorithm, including a comparison with conventional
methods such as principal components regression, and appli-
cation to the infilling of missing values in climate field data,
while Rutherford et al. (2003) discuss specific applications to
palaeoclimate reconstruction. Here, we summarize the primary
features of the methodology relevant to the current analysis.

The RegEM method is analagous to other methods of CFR
in which missing spatial data are estimated from sparse early
data (or proxy data) through relating the patterns evident in
the sparse longer data to the patterns defined by the empirical
eigenvectors (EOFS) estimated from a shorter, data-rich inter-
val during which a nearly complete version of the field of inter-
est (e.g., surface temperature) is available (e.g., Smith et al.,
1996; Kaplan et al., 1997; Mann et al., 1998). In contrast, how-
ever, with purely EOF-based methods in which the available
eigenvectors basis set is truncated above some determined cut-
off, higher-order patterns are retained, but are diminished in
their contributions through the use of a ‘regularization para-
meter’ which effectively smoothes out increasingly hetero-
geneous covariance structures. This procedure thus allows
more complete use of the available spatiotemporal information
in the reconstruction process. The statistics of the data set are
estimated from all available data, including proxy data outside
the ‘calibration’ interval during which proxy and instrumental
data overlap, based on an iterative (and thus nonlinear)
approach to estimating the complete data matrix.

One concern that arises with this, and other similar
approaches, to CFR is that the reconstructions of past anoma-
lies may be biased by nonstationarity in the covariance
information, particularly in the face of possible recent anthro-
pogenic influences on patterns of climate present in the recent,
more data-rich interval. Rutherford et al. (2003) tested the
RegEM method with both instrumental data and control
and forced model surface temperature fields, and found that

if radiative forcing is relatively stationary over a data-sparse
period (e.g., an older interval with no instrumental data) and
increases rapidly over a data-rich period (e.g., the more recent
interval containing both instrumental data and proxy data) the
imputed anomalies over the data-sparse period remain essen-
tially unbiased as long as an adequate length (multidecade)
calibration interval is available. It thus appears that use of
the data-rich twentieth-century instrumental record (which
may contain trends that that are, at least in part, associated
with the effects of anthropogenic climate forcing) in the cali-
bration process does not significantly bias reconstructions of
climate in previous centuries. In fact, such considerations are
probably less important in reconstructions of continental
drought, as there is no evidence for nonstationary behaviour
in the mean (although, as discussed above, there is reasonable
evidence of nonstationary patterns of drought response to
tropical ENSO forcing). Additional experiments have been
performed with RegEM making use of synthetic proxy data
networks (‘pseudoproxies’) to establish the level of skilful
resolved variance that might reasonably be expected in climate
field reconstructions based on proxy data networks of varying
size and statistical quality (Mann and Rutherford, 2002).

The regularized EM algorithm is similar to the conventional
EM (‘Expectation Maximization’) algorithm for estimating the
means and covariances of a data matrix. The estimation prob-
lem is ‘regularized’, however, in that a ‘ridge parameter’ is used
to inflate the diagonal elements of the covariance matrix so as
to avoid the problem of estimating the eigenstructure of a
rank-deficient matrix. The algorithm starts with initial esti-
mates of the mean and data covariance matrix and iteratively
refines these estimates until they approach asymptotic values.

The regularization parameter h in the RegEM algorithm
effectively plays a similar role to the choice of how many eigen-
vectors to retain in EOF-based reconstruction methods (e.g.,
Kaplan et al., 1997; Mann et al., 1998), controlling the tradeoff
between retained variance and the degree of smoothing and
spatiotemporal noise suppression. Thus, the selection of h is
a key decision in the RegEM approach. If the value of h is
too small, then the imputed values will be increasingly compro-
mised by sampling error, while if h is too large the imputed
values will tend towards the data mean values, leading to an
underestimate of the data variance (and thus, an increased reg-
ularization error). The optimal value of h should consequently
minimize the total imputation error (the sum of the sampling
error and the regularization error), and can be estimated by
generalized cross-validation (GCV). In practice, a well-defined
global minimum in the GCV function is often difficult to
obtain, and a number of additional practical constraints on
the selection of h must be employed (see Schneider, 2001,
and Rutherford et al., 2003, for a more detailed discussion).

In our procedure, the missing (prewhitened, as discussed
above) PDSI estimates were initially assigned the mean values
of the associated PDSI gridpoint series. As in Rutherford et al.
(2003) we used, as stopping criterion, the requirement of a
root-mean-square change in imputed values between iterations
of less than 0.5%. An ‘inflation factor’ adjusts the residual
covariance matrix for the underestimation of the imputation
error due to the regularization (see Schneider, 2001), which
must be taken into account in estimating uncertainties in the
imputed values (for details, see Schneider, 2001; Rutherford
et al., 2003). Owing to the added complication of estimating
the uncertainty in the full reconstructions from the imputation
error in the prewhitened data, we have adopted the alternative
approach of estimating self-consistent uncertainties in the
reconstructions based on the distribution of verification period
residuals (see, for example, Mann et al., 1998). The resulting
uncertainty estimates include contributions from both the
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reconstruction of the prewhitened field and from the serial
persistence contribution to the full reconstruction.

Cross-validation results

A cross-validation (or ‘verification’) procedure was used to es-
timate the fidelity of the PDSI reconstructions. In this pro-
cedure, the instrumental PDSI records from a restricted 1928
to 1978 interval were used in the calibration of the tree-ring
predictor data, while earlier PDSI data available across the full
domain from 1895 to 1927 were withheld to independently test
the skilfulness of the imputed values. The associated cali-
bration interval corresponds exactly to that used by Cook
et al. (1999). However, as already noted, the gridded instru-
mental PDSI data sets used by Cook et al. (1999) and this
study differ somewhat. Therefore, while the calibration=
verification period cross-validation statistics can be compared
between studies, they will differ by a small unknown amount
due to differences in the predictand data fields themselves. Un-
like other traditional methods of palaeoclimate reconstruction,
an independent estimate of calibrated variance is not strictly
possible in the RegEM procedure (see Rutherford et al.,
2003). However, as calibration resolved variance, prone to
statistical overfitting, is typically an overestimate of actual
resolved variance, cross-validated resolved variance is in any
case a more rigorous metric of true reconstructive skill, and
a more meaningful basis for comparison of reconstructions.

Domain-wide cross-validation results
(AD 1895�1927)
Employing, as in Cook et al. (1999) a 1928�78 calibration
interval, and a fixed 1895�1927 verification interval here, we
evaluated the fidelity of the various PDSI reconstructions
using standard measures of cross-validated reconstructive skill
(e.g., Cook et al., 1999; Mann and Rutherford, 2002), includ-
ing the ‘Reduction of Error’ (RE) statistic (‘b’ in the termin-
ology of Mann et al., 1998) and the squared Pearson
correlation coefficient, r(m)2. The latter measures the level of
covariation between two variables, but ignores the possible dif-
ferences between the two variables in their mean and variance.
The former is arguably a more rigorous measure of skill, mea-
suring the correspondence not only in terms of the relative
departures from mean values but also in terms of the means
and absolute variance of the two series. These statistics can
be calculated for individual gridpoints, means over particular
regions or the entire global domain, or the multivariate field.
The multivariate versions of the statistics can be defined as a
simultaneous sum over time (during the verification interval)
and gridpoint,
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where i and j represent year and gridpoint, respectively, Xij and

X̂Xij are the actual and reconstructed PDSIs, and X and X̂X are

the mean values of Xij and X̂Xij . RE ¼ 0 represents the lower

limit for a statistically ‘skilful’ reconstruction in the sense that

the nominal skill associated with reconstructing the climatolo-

gical mean is matched or exceeded (note, however, that

RE < 0 may in some cases also be argued to exhibit skill in

the sense that the verification period mean is not a priori

known).

The results of the cross-validation exercises (as summarized
in Table 1) indicate that RegEM calibration scheme (iii) (‘re-
gional’ drought calibrated against ‘global’ tree-ring predictors)
based on a regionally variable screening threshold, provides
the best apparent skill, with a multivariate value of
RE ¼ 0.41 and r2 ¼ 0.42, and with RE ¼ 0.71 and r2 ¼ 0.70
for the domain or ‘global’ mean series (Table 1d), suggesting
that the associated PDSI reconstruction skilfully resolves
nearly half of the variance in the full PDSI field and 70% of
the variance in the ‘global’ mean series (note that an analysis
using the restricted set of 425 chronologies used by Cook
et al., 1999, rather than the full 483 available chronologies,
yields no significant differences in skill, with multivariate
RE ¼ 0.39 and global mean series RE ¼ 0.71 in comparison;
Table 1d). Case (ii) (‘regional’ drought calibrated against
‘regional’ tree-ring predictors) and case (i) (‘global’ drought
calibrated against ‘global’ tree-ring predictors) both exhibit
moderately lower levels of skill for both multivariate and
global mean diagnostics (Table 1a, 1b, 1c), with case (i)
employing a 95% significance criterion in screening giving the
poorest performance (Table 1b), though even in this case a
quite skilful reconstruction is evident at the gridpoint level
(RE ¼ 0.29).The results of the ‘regional versus regional’
experiments with fixed selection criterion (not shown) are quite
similar to those shown in Figure 3c, with verification scores
observed to be slightly lower (Table 1c).

The skill evident in the Cook et al. (1999) reconstructions
based on PPR (Table 1f ) is moderately below the ‘optimal’
RegEM results achieved in scheme (iii) with a regionally vari-
able screening threshold (Table 1d), and similar to that
achieved in both RegEM scheme (iii) with fixed screening
threshold (Table 1e), and case (ii) with regionally variable
screening threshold (Table 1c). The comparisons thus suggest
that a modest gain in reconstructive skill can be accomplished
through the explicit incorporation of nonlocal information in
the tree-ring predictor network as is permitted in scheme
(iii). A similar conclusion has been independently based on
use of the PPR method in conjunction with a regionally vari-
able search radius (Cook, unpublished data).

The verification scores show sizeable differences at the
regional scale (both for the multivariate field and regional
domain means). The cross-validation skill estimates for the
‘optimal’ RegEM results as defined above generally remain
superior to those evident in all other (RegEM and PPR) recon-
structions at the regional scale (Table 1). The exceptions are
that the estimated skill is slightly exceeded by case (ii) in region
3 and by PPR in regions 7 and 8 for the multivariate skill
measures, and are exceeded by PPR in regions 7 and 8 for
the regional domain mean series.

While the diagnostics discussed above support the fidelity of
the reconstructions at global or regional scales, further work is
necessary to evaluate the pattern of skill in greater spatial
detail. We calculated the verification skill diagnostics for all
available gridpoints for the various RegEM reconstruction
schemes and PPR. Given the length (33 years) of the 1895 to
1927 verification interval, any r2 > 0.10 is statistically signifi-
cant at the a ¼ 0.05 level based on a one-sided test. Based
on this criterion, only five of the 155 gridpoint reconstructions
failed the significance test for the case (i), 11 failed for case (i)
with fixed screening threshold of jRcj ¼ 0.276, 11 failed for
case (ii), two failed for case (iii) (with variable screening thresh-
old) and two failed for case (iii) with fixed screening threshold
of jRcj ¼ 0.276, and seven failed for PPR (Cook et al., 1999).
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(d) Verification scores for the case of global proxy calibrated against

regional PDSI

RE(a) r(a)2 RE(m) r(m)2 jRcj num

region-1 0.61 0.61 0.30 0.33 0.37 135

region-2 0.77 0.70 0.56 0.46 0.38 200

region-3 0.61 0.61 0.27 0.30 0.58 14

region-4 0.56 0.68 0.27 0.35 0.34 122

region-5 0.62 0.63 0.45 0.45 0.21 361

region-6 0.71 0.76 0.53 0.54 0.57 16

region-7 0.57 0.62 0.32 0.33 0.48 11

region-8 0.41 0.52 0.17 0.23 0.41 16

global 0.71 0.70 0.41 0.42

(e) Verification scores for the case of global proxy calibrated against

regional PDSI with fixed jRcj

RE(a) r(a)2 RE(m) r(m)2 jRcj num

region-1 0.53 0.53 0.24 0.27 276

region-2 0.71 0.66 0.53 0.45 319

region-3 0.54 0.53 0.22 0.26 296

region-4 0.54 0.62 0.21 0.29 211

region-5 0.59 0.59 0.43 0.44 275

region-6 0.60 0.62 0.42 0.43 225

region-7 0.55 0.54 0.23 0.26 136

region-8 0.20 0.39 0.08 0.22 131

global 0.70 0.71 0.36 0.37 .276

(f) Verification scores for PPR

RE(a) r(a)2 RE(m) r(m)2

region-1 0.55 0.56 0.26 0.31

region-2 0.66 0.68 0.45 0.38

region-3 0.52 0.49 0.17 0.24

region-4 0.52 0.63 0.20 0.33

region-5 0.60 0.63 0.42 0.42

region-6 0.67 0.69 0.46 0.46

region-7 0.58 0.58 0.33 0.32

region-8 0.58 0.62 0.24 0.28

global 0.69 0.69 0.35 0.36

Table 1

(a) Verification scores for the case of global proxy calibrated against

global PDSI

RE (a) r(a)2 RE(m) r(m)2 jRcj num

region-1 0.48 0.48 0.20 0.24

region-2 0.68 0.64 0.49 0.40

region-3 0.49 0.47 0.17 0.20

region-4 0.50 0.57 0.08 0.19

region-5 0.62 0.62 0.44 0.44

region-6 0.53 0.54 0.38 0.38

region-7 0.31 0.33 0.08 0.12

region-8 0.36 0.40 0.16 0.18

global 0.70 0.69 0.32 0.32 0.40 352

(b) Verification scores for the case of global proxy calibrated against

global PDSI with fixed jRcj

b(a) r(a)2 b(m) r(m)2 jRcj num

region-1 0.47 0.49 0.21 0.22

region-2 0.63 0.63 0.45 0.39

region-3 0.43 0.42 0.14 0.18

region-4 0.52 0.54 0.09 0.17

region-5 0.60 0.60 0.43 0.42

region-6 0.50 0.51 0.34 0.35

region-7 0.28 0.28 0.06 0.09

region-8 0.28 0.36 0.12 0.17

global 0.67 0.65 0.29 0.29 0.276 467

(c) Verification scores for the case of regional proxy calibrated against

regional PDSI

RE(a) r(a)2 RE(m) r(m)2 jRcj num

region-1 0.36 0.36 0.21 0.22 0.57 13

region-2 0.70 0.59 0.53 0.42 0.60 11

region-3 0.59 0.61 0.29 0.32 0.51 12

region-4 0.49 0.69 0.15 0.29 0.53 23

region-5 0.56 0.61 0.38 0.45 0.27 137

region-6 0.66 0.73 0.49 0.51 0.57 11

region-7 0.53 0.56 0.30 0.30 0.42 10

region-8 0.32 0.54 0.09 0.20 0.31 18

global 0.68 0.67 0.36 0.38

(g) Verification scores for the case of global proxy calibrated against

global PDSI based on 425 chronologies

RE(a) r(a)2 RE(m) r(m)2 jRcj num

region-1 0.64 0.64 0.29 0.34 .37 117

region-2 0.75 0.66 0.52 0.42 .38 179

region-3 0.61 0.61 0.27 0.30 .58 14

region-4 0.56 0.66 0.26 0.35 .34 116

region-5 0.59 0.60 0.42 0.42 .20 336

region-6 0.69 0.73 0.51 0.52 .56 16

region-7 0.51 0.61 0.29 0.31 .48 10

region-8 0.42 0.55 0.18 0.24 .41 14

global 0.71 0.70 0.39 0.40

�RE(a) is the RE value for mean fields, RE(m) is the RE value for multi-gridpoints (multivariate value), r(a)2 is the squared correlation coefficient between actual PDSI

and reconstructed PDSI for mean fields, r(m)2 is the squared correlation coefficient between actual PDSI and reconstructed PDSI for multi-gridpoints, jRcj is the opti-

mum correlation coefficient obtained from screening method for a, c, d and g and a 95% significant criteria (fixed) for b and e, and num is the numbers of proxy data

(subset) selected for reconstruction.
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Of the 155 gridpoints, 18 gridpoints failed to pass the RE ¼ 0
criterion for case (i), 15 failed for case (i) with fixed
jRcj ¼ 0.276, 20 failed for case (ii), four failed for case (iii)
and 12 failed for case (iii) with fixed jRcj ¼ 0.276, and 10 failed
for PPR. The optimal RegEM reconstruction (case (iii) with
regionally variable screening threshold) thus provides the
greatest evident skill, with only two gridpoints failing both
the RE and r2 significance tests. These two gridpoints (154
and 155 in Figure 1), both in the far northeastern United
States, and neighbouring the Atlantic ocean, may be located
in regions where tree growth exhibits a particularly low sensi-
tivity to drought owing to the plentiful nature of summer rain-
fall and relatively low summer temperatures. The other two
gridpoints that failed to pass the RE ¼ 0 test are located in
Nevada, a semi-arid region in which tree-ring sensitivity to
drought is, by contrast, expected to be quite high. Because
other gridpoints neighbouring these gridpoints all exhibit rela-
tively high RE values, we suspect that the failure of verification
here results, instead, from data quality problems with the early
instrumental PDSI gridpoint series. Since the problem in this
case appears in the RE statistic and not the r2 statistic, it
may indicate an artificial change in the mean or variance of
the instrumental data contributing to the PDSI gridpoint esti-
mate. Indeed, Cook et al. (1999) demonstrated degradation of
correlation of PDSI data from one weather station in Nevada
with estimates of nearby stations over time. Such examples
underscore the possibility that the cross-validation statistics
may sometimes actually underestimate the true skill of the
reconstruction.

Figure 3 compares the spatial patterns of RE verification
scores for the three RegEM schemes and PPR. Case (iii) with
regionally variable screening threshold exhibits the most
homogeneous distribution of RE value and highest map mean
score RE ¼ 0.36 (Figure 3d). This mean score is notably higher
than for case (i) (Figure 3a, RE ¼ 0.25), case (i) with fixed

jRcj ¼ 0.276 (Figure 3b, RE ¼ 0.23), case (ii) (Figure 3c, RE ¼
0.30), case (iii) with fixed jRcj ¼ 0.276 (Figure 3e, RE ¼ 0.30),
and PPR (Figure 3f, RE ¼ 0.31). In all cases, the RE scores
in the western United States indicate a high fidelity of recon-
structions in that region (isolated low RE scores are found
near the border of Nevada and Utah for all RegEM cases;
however, the fact that these low RE scores are not observed
for the PPR reconstruction is somewhat enigmatic, suggest-
ing the possibility that this feature represents a locally spe-
cific failure in the regEM reconstructions). It is interesting
that the case (i) RegEM (‘global versus global’) reconstruc-
tions exhibit particularly low verification scores in most of
the eastern US. This probably results from the presence of
unstable drought teleconnection patterns that are isolated
in an analysis of the covariance of the entire instrumental
PDSI field, whereby the skilful information present in the
western United States is inappropriately communicated to
the eastern portions of the global domain.

It is useful to focus in detail on the comparison between
the ‘optimal’ RegEM reconstruction defined by case (iii) with
regionally variable screening threshold, and the PPR recon-
struction of Cook et al. (1999). Detailed comparison of the
RE score patterns (Figure 3, d and f ), suggest similar fidelity
of reconstructions in the eastern United (RE ¼ 0.30 in both
case). Reconstructions in the western US show higher RE
scores (0.30 to 0.60), with the RegEM reconstructions
exhibiting greater apparent skill in most regions, with the
glaring exception of the border of Nevada and Utah as dis-
cussed earlier. The most profound improvement in indicated
skill of RegEM over PPR is found in North Dakota, South
Dakota, Kansas and the Great Lakes region, wherein the
tree-ring predictor data is quite sparse. Remote tree-ring
chronologies, which contain nonlocal information relevant
to climate, are made use of in the RegEM approach,
providing a potential advantage over the PPR approach,

Figure 3 Maps of the verification RE statistic for the various RegEM calibration schemes and PPR method. Note that RE > 0 represents the

threshold value for skilful reconstruction.
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which is forced to make use of a relatively restricted set of
candidate predictors in such data-sparse regions. Such com-
parisons suggest that use of large-scale covariance infor-
mation, such as in RegEM, may be of greatest value when
dealing with sparse predictors (e.g., as is the case with cur-
rently available global multiproxy data as in Mann et al.,
1998; 1999) and of less utility when dealing with predictor-
rich regions (as is the case in many regions with the Cook
et al., 1999, network). Improvement in the fidelity of recon-
structions afforded by RegEM is also evident in the compari-
son of spatial patterns of the r2 verification statistic across the
domain (Figure 4), with map mean r2 ¼ 0.43 for RegEM and
0.38 for PPR. A comparison of Figures 3 and 4 suggests simi-
lar patterns of the RE and r2 statistics for a given reconstruc-
tion, with the notable exception of the isolated low values of
RE in the Nevada=Utah border region noted earlier. In the
case of PPR, the low values of RE in the Great Lakes Region
have no obvious counterpart in the r2 statistic, suggesting
that the disagreement arises from a mismatch in the mean
values and=or variance.

Spatial variability in the pattern of variance skilfully
resolved by the reconstructions can potentially compromise
the interpretation of spatial patterns of variability in the
reconstructions. Figure 5 shows the contoured maps of grid-
point standard deviation for the actual PDSIs and estimated
PDSIs during the verification interval based on both RegEM
and PPR methods. The loss of variance in the reconstructed
PDSI patterns is obvious for both RegEM and PPR, but the
greater amplitude variability of drought in the western half
of the US is captured in both cases. The verification period
map correlation between the patterns of the standard
deviation in the observed and reconstructed PDSI are
r ¼ 0.66 for RegEM and r ¼ 0.48 for PPR, suggesting that
the RegEM reconstructions may capture the actual spatial pat-
terns of drought variation over the US somewhat more faith-
fully (note that PPR calibration period values are somewhat

higher than the indicated PPR verification period value;
Cook et al., 1999).

Extension of cross-validation results (AD 1870�94)
To further investigate the fidelity of the reconstructions, we
compared the reconstructed PDSI field with a more spatially
restricted, but temporally extended, set of instrumental PDSI
gridpoint estimates available back to 1870. This extended veri-
fication data set is statistically independent of any screening
optimization procedures described earlier, thus providing a
truly independent measure of statistical reconstructive skill.
The extended PDSI gridpoint series were calculated based on
a multivariate regression of the gridded instrumental PDSI
gridpoint data used here against longer available seasonal sta-
tion precipitation and temperature records from the HCN net-
work. Unfortunately, very few long such records exist in the
western United States, so that the extended records are largely
limited to the eastern half of the US, limiting the spatial extent
of longer-term cross-validation possible. We selected 62 sta-
tions that have monthly temperature records and 70 stations
that have monthly precipitation records back to 1870 (Table 2a).
Gridding these data onto the same PDSI grid used by Cook
et al. (1999) provided 16 gridpoints with monthly precipitation
and temperature information back to 1870 (an attempted
extension further back in time yielded very few useful gridpoint
records, as the individual instrumental records available
become far more sparse, and contain far more missing data.
Therefore, the use of an even longer interval was likely to
significantly impair the reliability of the comparison.)

We estimated the summer PDSI gridpoint series from 1870
to 1894 for these 16 gridpoints based on a simple multivariate
statistical model whose predictors included current (summer)
and antecedent (spring and winter) precipitation, and current
(summer) temperature available during the 1895�1978 overlap
interval between the PDSI gridpoint series and station
instrumental data. The reliability of the PDSI reconstruction

Figure 5 Maps of the standard deviation for actual and reconstructed PDSI in the verification period (1896�1927). Reconstructions based on both

RegEM and PPR show at least modest loss of variance relative to the observed data.

Figure 4 Maps of the verification r2 statistic for the various RegEM calibration schemes and PPR method. Note that r2 > 0.10 represents the

threshold value for statistical significant at the a ¼ 0.05 level.
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was estimated based on R2, and F and p values from the multi-
variate regression. To further test the reliability of the resulting
extended PDSI estimates, we performed a cross-validation
exercise employing a restricted 1928�78 training interval,
using the 1895�1927 interval for verification. The results of
these analyses are described in Table 2a. The cross-validation
results indicate reasonable skill for the instrumental-based
extensions of the PDSI overall with a multivariate RE ¼ 0.36
for the instrumental PDSI reconstructions during the
1895�1927 verification period. Certain gridpoints, however,
exhibit much greater levels of skill (RE ¼ 0.7 to 0.9) and
are particularly useful for extending the cross-validation
exercise. Four of the 16 gridpoints did not pass the RE ¼ 0
test, probably due to an offset in mean from the true PDSI
series.

These instrumental-based PDSI reconstructions provide a
useful basis for extending the cross-validation results described
above. Table 2b shows the verification scores in the interval of
1870 to 1894 between the extended PDSI gridpoint series (as
estimated from the multivariate regression model) and the
reconstructed PDSI field from both RegEM (optimal) and
PPR methods. For the total multivariate field, the RegEM
reconstructions yield a modestly skilful verification RE ¼
0.13, while the PPR results exhibit a more marginally skilful
RE ¼ 0.03. If the skill estimates are restricted, however, to
the four extended instrumental PDSI gridpoint series which
resolve greater than 70% of the variance in cross-validation
with the true instrumental PDSI series (and are therefore most
likely to represent reliable extensions of the actual PDSI

series), the respective numbers are considerably better:
RE ¼ 0.30 (RegEM) and RE ¼ 0.17 (PPR). Of the 16 grid-
points, six fail the RE ¼ 0 test for RegEM, while seven fail
for PPR; both RegEM and PPR have six gridpoints that failed
to pass the 95% significant level for r2. Most of the gridpoints
that did not pass RE or r2 significance tests are located along
the east coast of the US. These extended cross-validation exer-
cises nonetheless independently substantiate the skilfulness in
both the RegEM and PPR reconstructions, as well as the mod-
est improvement in skill in the RegEM reconstruction. More-
over, the threshold selection criteria for selecting candidate
predictors described earlier is entirely independent of these
cross-validation results in all cases.

Yearly map verification scores
We are furthermore interested how well the spatial patterns for
particular years are replicated by the tree-ring-based recon-
structions. To test the temporal homogeneity between actual
and reconstructed PDSI maps, we used the following spatial
diagnostics: spatial RE, Pearson correlation coefficient (r),
and congruence coefficient (c),

REi ¼
X

j

ðXij �X̂XijÞ2=
X

j

X 2
ij ð3Þ

ri ¼
X

j

ðpij � �ppiÞðqij � �qqiÞ=
X

j

ðpij � �ppiÞ2
X

j

ðqij � �qqiÞ2
" #1=2

ð4Þ

Table 2

(a) Regression statistics and cross-validation statistics of the instrumental PDSI

longitude � 83.5 � 95.5 � 89.5 � 86.5 � 83.5 � 95.5 � 89.5 � 83.5 � 74.5 � 71.5 � 89.5 � 83.5 � 77.5 � 92.5 � 74.5 � 68.5

latitude 33 39 39 39 39 41 41 41 41 41 43 43 43 45 45 45

stations (tem.) 1 5 4 3 2 1 5 6 5 2 3 4 13 1 5 2

stations (ppt.) 2 6 5 6 3 1 5 4 7 3 4 4 13 1 4 2

Regression statistics for multiregression models 1 (overlap interval is 1928�78)

R2 0.72 0.76 0.78 0.75 0.67 0.62 0.66 0.65 0.69 0.73 0.55 0.66 0.74 0.50 0.63 0.65

F-value 30.1 36.4 39.6 34.9 23.0 18.8 22.6 20.9 25.1 31.1 14.0 22.6 31.8 11.3 19.8 21.2

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Regression statistics for multiregression models 2 (overlap interval is 1895�1978)

R2 0.68 0.74 0.77 0.78 0.64 0.59 0.69 0.63 0.57 0.65 0.57 0.54 0.64 0.48 0.49 0.61

F-value 42.4 56.9 65.3 68.2 34.6 28.4 42.9 33.0 25.8 37.1 26.3 23.1 35.1 18.0 19.0 30.7

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Verification scores (1895�1927) between actual and extended PDSIs based on multiregression models 1

RE 0.62 0.73 0.79 0.85 0.46 � 0.22 0.79 0.34 0.00 0.12 0.46 � 0.09 0.19 0.18 � 0.27 � 0.77

r 0.80 0.86 0.89 0.92 0.84 0.66 0.89 0.74 0.63 0.80 0.81 0.75 0.80 0.65 0.48 0.76

Multivariate verification scores: RE (actual) ¼ 0.36, r(actual) ¼ 0.70

(b) Cross-validation of the reconstructions (RegEM and PPR) based on the extended instrumental series

Verification scores (1870�94) between reconstructions and extended PDSIs based on multiregression models 2

longitude � 83.5 � 95.5 -89.5 � 86.5 � 83.5 � 95.5 � 89.5 � 83.5 � 74.5 � 71.5 � 89.5 � 83.5 � 77.5 � 92.5 � 74.5 � 68.5

latitude 33 39 39 39 39 41 41 41 41 41 43 43 43 45 45 45

RE (RegEM) 0.11 0.24 0.20 0.22 � 0.06 0.35 0.52 0.47 � 0.31 � 0.62 0.52 0.33 � 0.15 � 0.25 0.21 � 0.03

RE (PPR) � 0.00 0.32 � 0.01 0.03 � 0.22 0.30 0.35 0.40 0.18 � 0.46 0.39 � 0.07 0.58 � 1.51 0.04 � 0.23

r-(RegEM) 0.41 0.50 0.53 0.50 0.26 0.59 0.72 0.69 � 0.14 0.01 0.76 0.62 0.13 0.27 0.58 0.10

r-(PPR) 0.37 0.58 0.45 0.44 � 0.01 0.41 0.76 0.56 0.42 0.27 0.70 0.44 0.75 0.11 0.33 � 0.33

Multivariate verification scores: RE (RegEM) ¼ 0.13, RE (PPR) ¼ 0.03, r(RegEM) ¼ 0.42, r(PPR) ¼ 0.39

�The bold values for reduction of error (RE), correlation (r) and explained variance of multi-regression model (R2) have passed a certain significant

level.
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where i and j represent year and gridpoint, respectively, Xij

and X̂Xij are the actual and reconstructed PDSIs, respectively,
pij and qij are the normalized actual and reconstructed
PDSIs, respectively, and �ppi and �qqi are the mean fields for
the year i.

As in Cook et al. (1999), we normalized actual and recon-
structed PDSI gridpoint values for each gridpoint based on
its calibration period mean and standard deviation prior to
estimating the r and c statistics. This latter step is performed
to avoid any regional bias in map correlation estimates owing
to spatial variations in the PDSI standard deviation.

The congruence (c) test was originally developed as a
measure of the similarity between two factor patterns in
multivariate research (Richman, 1986; Broadbrooks and
Elmore, 1987), and penalizes the difference between the
two mean estimates, unlike the correlation (r) test. c argu-
ably thus provides a more complete measure of the
similarity between the two fields. There is no theoretical null
distribution for c owing to its partial dependence on the ran-
dom variables �ppi and �qqi. We thus used a Monte Carlo pro-
cedure (employing 10 000 realizations) to estimate an
empirical null distribution and significance levels for c
(e.g., Broadbrooks and Elmore, 1987).

Figure 6 shows the time-dependent verification measures
provided by r, c and RE as defined above. Both the RegEM
and PPR reconstructions pass the 99% significance level for
the r test for all years, with means of 0.57 (RegEM) and 0.50
(PPR), though PPR nearly fails for 1908. For the c statistic,
RegEM fails the 95% significance test for one year (1897) as
does PPR (1898). The mean values of c are 0.62 and 0.57 for
RegEM and PPR respectively (note that c tends to be biased
towards 1.0 relative to r; Richman, 1986). The RE test, argu-
ably the most rigorous, indicates three years (1895, 1897 and
1921) that fail to exceed the RE ¼ 0 skill threshold for RegEM,
and four years (1895, 1896, 1897 and 1922) that fail for PPR,
with mean values of 0.35 (RegEM) and 0.29 (PPR). While
RegEM tends to outperform PPR for all three spatial skill
measures, the overall pattern over time of the yearly skill mea-

sures is similar for both RegEM and PPR for all three diagnos-
tics, suggesting a modest decrease back in time (particularly
prior to the twentieth century) in each case. It is tempting to
conclude that this trend might arise, at least in part, from
diminished instrumental data quality in the earliest years,
owing for example to a reduced number of stations contri-
buting to the gridpoint averages. The relatively better perform-
ance of the r test in the earliest years suggests that that the
degradation in the c and RE skill measures may result from
a bias in estimates of the mean in either the actual or
reconstructed PDSI field.

PDSI reconstructions

As the verification results described in the previous section
indicate that an ‘optimal’ RegEM results from a calibration
scheme involving regional PDSI and global tree-ring predic-
tors with regionally variable screening threshold, all further
PDSI reconstructions are based on this choice of methodology.
Furthermore, having withheld the 1895�1927 instrumental
PDSI data for statistical model validation, all available

Figure 6 Map comparison statistics (RE, r and c statistics as described

in text) quantifying the degree of similarity between actual and recon-

structed PDSI patterns over time for RegEM (thick) and PPR (thin)

methods. Significance limits are represented by dotted lines.

Figure 7 Time series of regional and global mean drought back to

1700. Shown are optimal RegEM reconstruction from 1700 to 1894

(solid line), PPR reconstruction from 1700 to 1978 (dotted line) and

instrumental PDSI value from 1895 to 1978 (solid line). The two stan-

dard error uncertainties in the RegEM reconstructions are indicated by

the grey shading. Note that the 1930s ‘Dust Bowl’ drought is the lar-

gest continental-scale drought in the reconstructed record, exceeding

the two standard error limits for the ‘global’ reconstruction.
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(1895�1978) instrumental PDSI data are subsequently used in
calibration to produce the final PDSI reconstructions. The
reconstructions are performed back to 1700, coinciding with
the shortest tree-ring chronologies in the candidate predictor
set of 483. The final reconstructions employed the same sub-
set’s candidate predictors indicated in the cross-validation
experiments (Table 1).

Regional and ‘global’ mean PDSI reconstructions
Figure 7 shows the RegEM reconstructed regional and global
mean summer drought reconstructions (and self-consistent two
standard error uncertainties) from 1700 to 1894 along with the
PPR reconstructions from 1700 to 1978, and the instrumental
data from 1895 to 1978. The comparisons show a high degree
of similarity between RegEM and PPR reconstructions for the
global (domain) mean as well as the individual regions (with
the exception, to some extent, of region 8). The correlation
coefficients between the two reconstructions over the interval
1700�1894 are r ¼ 0.80 for region 1, 0.84 for region 2, 0.81
for region 3, 0.86 for region 4, 0.91 for region 5, 0.92 for region
6, 0.92 for region 7, 0.49 for region 8 and 0.92 for the ‘global’
mean over the continental United States. The similarity
between the PPR and RegEM reconstructions at this scale
underscore the robustness of regional and global drought
estimates derived from the tree-ring predictor network of
Cook et al. (1999).

We subsequently consider the indicated history of drought
and wet episodes. The global mean PDSI series (Figure 7) indi-
cates the Dust Bowl drought of the 1930s to be the most severe
drought at this spatial scale to have occurred in the US since
1700, exceeding by more than two standard errors any other
indicated drought periods in the reconstruction. As noted by
Cook et al. (1999), other particularly notable drought periods
occur during the 1820s and 1860s, and a prominent wet period
is observed over the interval 1825�40. This latter wet period is
comparable to the wet interval of 1900�20 recorded in the
instrumental record. The regional drought series (Figure 7)
show some significant differences in both amplitude, and
detailed features of the chronology. Consistent with the obser-
vation of greater drought variability in the western US (e.g.,
Figure 5), regions 1, 2, 3, 5 and 6 exhibit greater amplitude
variability than 4, 7 and 8, with regions 5 and 2 exhibiting
the greatest amplitude variability. Regions 2 and 5 (and to a
lesser extent 6), in particular, show considerable multidecadal
variability in drought. At the regional scale, it is less obvious
that twentieth-century episodes (e.g., the Dust Bowl droughts)
are unusual in a longer-term context. For example, the RegEM
mean drought series for region 2 indicates two pronounced
drought periods occurring around 1710�20 and 1820�30 that
are similar in magnitude and duration to the Dust Bowl
episode, within the indicated uncertainties. The Dust Bowl
episode is barely evident in region 5, and certainly is less

Figure 8 The spatial patterns of four significant drought years based on RegEM and PPR.
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prominent than drought events occurring during the 1730s,
1750s, 1780s, 1820s and 1880s. For region 6, a large drought
occurred in the 1950s, but both RegEM and PPR reconstruc-
tions show similarly prominent drought periods in 1750s,
1770s, 1820s and 1860s. Region 8 is the only area where
reconstructions based on RegEM and PPR indicate relatively
large differences. Both reconstructions show considerable loss
of variance relative to the instrumental PDSI series, which, as
discussed earlier, may be due to the relatively lower sensitivity
of species in this region to drought.

Spatial patterns for significant drought and wet years
Figure 8 shows the reconstructed PDSI patterns of four signifi-
cant continental drought years based on both RegEM and
PPR methods. The pattern for 1708 indicates a nearly conti-
nental-scale pattern of drought, with the western US exhibiting
the most severe drought. RegEM shows a particularly severe
drought over the northern mountain states. Both RegEM
and PPR indicate similar patterns of drought for 1736, with
moderate wetness in the southeastern US, and pronounced
drought in the central and western US. Moderate differences
are observed in the northern border region between Nevada
and Utah where PPR indicates wet conditions, while RegEM
indicates a mild drought. Both RegEM and PPR reconstruc-
tions indicate a prominent drought in the northwestern and
north central regions of the US in 1800, with the RegEM

drought pattern slightly broader and less regionally intense
than the PPR pattern. In the year 1864, drought is evident in
the western half of the US for both RegEM and PPR recon-
structions. Within the large drought area, PPR shows some
small-scale normal climate regions.

Figure 9 indicates the patterns of four significant continental
wet years. Both RegEM and PPR show a prominent wet event
in the mountain states for 1726, with the pattern more loca-
lized in the RegEM case. For the year 1745, wet conditions
are observed in both the far west and midwestern US, with
RegEM indicating a more longitudinally extended pattern,
and PPR indicating a more latitudinally extended pattern. In
1793, both RegEM and PPR indicate wet conditions in the
south central US, with PPR also indicating mild drought con-
ditions in the northeastern and northwestern US. For the year
1833, much of the central and mountain region exhibit wet
conditions with both RegEM and PPR reconstructions, with
the RegEM pattern more localized, and the PPR pattern orga-
nized into a number of disjoint wet regions. It is worthy of note
that most of the significant continental drought and wet years
are associated with anomalies in the central and west regions,
suggesting that these regions dominate continental-scale
drought and wet episodes. The RegEM reconstructions are
typically more spatially homogenous than the PPR reconstruc-
tions. This is consistent with the greater homogeneity of the
retained spatial variance (i.e., Figure 5), although it could also

Figure 9 The spatial patterns of four significant wet years based on RegEM and PPR, respectively.
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result, in part, from the regional spatial smoothing implicit in
the RegEM approach.

It is useful to investigate differences between the patterns of
drought reconstructed by the PPR and RegEM approaches,
for a specific example, the year 1864 (see Figure 8, lower right
and left panels), based on comparison with the pattern of raw
tree-ring width anomalies (Figure 10). The PPR reconstruction
is seen to follow closely the local pattern of tree-ring width
anomalies, indicating, for example, locally strong regions of
drought in south central California=western Nevada, along
the western Utah=Arizona border, and in the north central
states centred near the border of Nebraska and the Dakotas.
Each of these areas exhibits dense pockets of sizeable positive
width anomalies. By contrast, the RegEM reconstruction
shows a far less close local relationship between reconstructed
drought and tree-ring width anomalies, making use of more
intricate statistical information in the candidate predictor net-
work. The RegEM reconstruction exhibits less prominent
drought in southern California, a more western-shifted pattern
of drought in the north central US (centred closer to Montana
than the Dakotas), and a more prominent centre of drought in
the Nevada=Utah border.

Conclusions

The RegEM algorithm employed in this study, in contrast with
previous approaches, makes use of large-scale and nonlocal
covariance information in relating predictors and predictand
in reconstructing patterns of continental drought from tree-
ring proxy data. The appropriate use of this larger-scale and
nonlocal information appears to lead on average to modest
improvements over the drought reconstructions based on more
localized regression approaches such as PPR, as measured by
cross-validation statistics. The optimal RegEM drought recon-
struction appears to be achieved when ‘global’ (i.e., contermi-
nous US domainwide) candidate predictors are used to
reconstruct patterns of drought on a region-by-region basis

using predictor variable screening. We infer from this obser-
vation the existence of significant nonlocal information within
the long-term tree-ring predictor network that is useful in the
reconstruction of regional drought. The fact that the use of
global information in the predictand (instrumental PSDI) data
diminishes, rather than improves, the reconstructive skill, on
the other hand, suggests that the fundamental patterns of
large-scale drought variability cannot adequately be captured
through evaluating the spatial covariance information in the
relatively short (less than one century) instrumental calibration
data set. This limitation probably results from the apparent
somewhat unstable nature of large-scale drought teleconnec-
tion patterns in the US over the twentieth century, and the
greater regional character of the drought field as compared
to other (e.g., surface temperature) climatic fields.

The RegEM reconstruction appears to yield a modest im-
provement over previous conterminous US summer drought
reconstructions in general, as confirmed by a variety of metrics
of reconstructive fidelity. The most obvious improvements in
reconstructive skill seem to be found in tree-ring data-sparse
regions (e.g., the Dakotas and Kansas) where the RegEM
method makes use of nonlocal information, while the PPR
method is highly limited by data availability within the selected
search radius. The relatively low topographic relief of the
Great Plains would also allow for larger and more homo-
geneous fields of drought variability, thus extending the useful
correlation-decay distance between local drought and more
remote tree-ring chronologies. As commented earlier, PPR
with an adaptive search radius presents a useful alternative
strategy for dealing with such limitations.

Despite the modest improvements, and some differences
that are evident in the precise pattern of reconstructed drought
for particular years, it is quite encouraging that two very dif-
ferent methodologies (RegEM and PPR) for assimilating
tree-ring information into a reconstruction of past drought
patterns give, in general, such similar results (e.g., with respect
to global and regional average past drought histories). This
similarity seems to underscore the fundamental quality of the

Figure 10 Tree-ring width anomalies for the year 1864. Circular=triangular dots represent negative=positive values with larger and heavier dots indi-

cating the magnitude of anomalies.
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underlying predictor network of continental US drought-sensi-
tive tree-ring chronologies, and the consequent robustness of
PDSI reconstructions from this network based on the appli-
cation of different statistical reconstructions methodologies.
The current results reaffirm the key conclusions of Cook
et al. (1999). At the continental scale, the 1930s ‘Dust Bowl’
remains the most severe drought event since 1700 within the
context of the estimated uncertainties. More severe episodes
may have occurred at regional scales in past centuries.
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