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ABSTRACT
Heating in the ocean has continued in 2024 in response to increased greenhouse gas concentrations in the atmosphere,

despite the transition from an El Niño to neutral conditions. In 2024, both global sea surface temperature (SST) and upper
2000  m  ocean  heat  content  (OHC)  reached  unprecedented  highs  in  the  historical  record.  The  0–2000  m  OHC  in  2024
exceeded that of 2023 by 16 ± 8 ZJ (1 Zetta Joules = 1021 Joules, with a 95% confidence interval) (IAP/CAS data), which is
confirmed by two other data products:  18 ± 7 ZJ (CIGAR-RT reanalysis data) and 40 ± 31 ZJ (Copernicus Marine data,
updated  to  November  2024).  The  Indian  Ocean,  tropical  Atlantic,  Mediterranean Sea,  North  Atlantic,  North  Pacific,  and
Southern Ocean also experienced record-high OHC values in 2024. The global SST continued its record-high values from
2023 into the first half of 2024, and declined slightly in the second half of 2024, resulting in an annual mean of 0.61°C ±
0.02°C  (IAP/CAS  data)  above  the  1981–2010  baseline,  slightly  higher  than  the  2023  annual-mean  value  (by  0.07°C  ±
0.02°C for IAP/CAS, 0.05°C ± 0.02°C for NOAA/NCEI, and 0.06°C ± 0.11°C for Copernicus Marine).  The record-high
values of 2024 SST and OHC continue to indicate unabated trends of global heating.
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Article Highlights:
•   In  2024,  the  global  upper  2000  m  ocean  heat  content  was  the  highest  ever  recorded  by  modern  instruments,  ~16  ZJ
higher than the 2023 value.

•  The 2024 annual mean global SST was 0.05°C–0.07°C higher than in 2023, and a new record for the instrumentation era.

•  Regions with record-high OHC in 2024 included the Indian Ocean, tropical Atlantic, Mediterranean Sea, North Atlantic,
North Pacific, and Southern Ocean.

 

   

1.    Ocean  and  climate  changes  over  the  past
year

The year 2024 marks another in a series of years charac-
terized by record-breaking changes in Earth’s climate system
and  widespread  anomalous  weather  patterns,  indicative  of
the planet’s continued warming. The global climate continues
to  transit  into  uncharted  territory  (e.g., Rahmstorf,  2024).
Each of the first seven months of 2024 set new global mean
surface temperature (GMST) records, extending a remarkable
streak  of  13  consecutive  record-breaking  months  dating
back  to  2023,  based  on  Berkeley  (Rohde  and  Hausfather,
2020) and ERA5 (Hersbach et al., 2023) data. The warming
has been observed globally, with 63 countries experiencing
their hottest boreal summer on record. Over 2024, a stagger-
ing  104  countries  have  recorded  their  hottest  temperatures
ever  (Berkeley  GMST).  The  Antarctic  sea-ice  extent  for
much  of  early  2024  was  at  the  low  end  of  the  historical
1979–2010 range, similar to that experienced in 2023.

Climate change often amplifies natural weather and cli-
mate  phenomena,  intensifying  their  severity  and  causing
extreme events to become more widespread globally (IPCC,
2023). Drought, flooding, crop failure, heatwaves, and wild-
fires became common in many areas of the world in 2024,
in southern Africa in February, southern Asia and the Philip-

pines in April, heatwaves and rainstorms in South China in
summer, the Pantanal in Brazil in June, widespread heatwaves
and wildfires in Europe in August, floods in Chad, Nigeria
and  Central  Europe  in  September,  and  in  the  northeast
United States in November (Copernicus Climate Change Ser-
vice). In the United States, Hurricane Helene caused devastat-
ing  flooding  in  the  Southeast,  resulting  in  over  200  deaths
and  billions  of  dollars  of  economic  losses.  In  China,  since
1961, the summer air temperature reached its highest value,
accompanied by the most intense rainstorms from the south-
east to the northeast regions.

All these changes and extreme events are directly or indi-
rectly  impacted  by  human-induced  climate  change  (IPCC,
2021, 2023; Seneviratne  et al.,  2021).  Human  activities
release  greenhouse  gases  (GHGs)  into  the  atmosphere,
increasing their concentration and trapping heat within the cli-
mate  system,  which  drives  global  heating.  CO2,  a  major
GHG,  reached  an  annual  average  concentration  of  more
than  420  ppm  in  the  atmosphere  in  2024  (Forster  et al.,
2024),  which  is  a  record-high  level  in  at  least  2  million
years (IPCC, 2021), and ~140 ppm higher than the pre-indus-
trial  level  of  around  280  ppm  (Friedlingstein  et al.,  2023).
Other  changes  in  water  vapor,  clouds,  and  atmospheric
aerosols compound the excess heating (IPCC, 2021). Internal
variability  linked  to  ENSO (El  Niño–Southern  Oscillation)
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and PDO (Pacific Decadal Oscillation) drive additional varia-
tions.

About 90% of the heat accumulated in the climate system
is  stored  in  the  ocean,  increasing  ocean  temperatures  and
ocean heat content (OHC) (Hansen et al., 2011; Von Schuck-
mann et al., 2020, 2023; Abraham et al., 2022; Cheng et al.
2022a). Thus, OHC is a key climate indicator for monitoring
planetary  warming.  Due  to  the  ocean’s  large  heat  capacity
and  immense  volume,  the  change  in  OHC is  characterized
by much smaller month-to-month and year-to-year fluctua-
tions as compared to the surface temperature, making OHC
a  robust  metric  of  climate  change  (Cheng  et al.,  2017b;
Cheng et al. 2022a).

The GMST change is one of the key metrics for global
climate  action  efforts,  together  with  OHC,  and  sea  level
rise. GMST, and hence sea surface temperature (SST), are crit-
ical because they are crucial for climate feedback (e.g., black-
body radiation and cloud feedback) and also drive many cli-
mate impacts (e.g., storms and wildfires) (e.g., Zhang et al.
2020; Armour  et al.,  2024; Gilford  et al.,  2024; Hu  et al.,
2024).  The  Paris  Agreement,  signed  by  196  parties  at  the
2015 United Nations Climate Change Conference, set a goal
of limiting global temperature increases to well below 2°C,
while pursuing efforts  to limit  the increase to 1.5°C. How-
ever, there was a notable increase in global SST and GMST
from  2022  to  2023:  ~0.24°C  for  SST  and  ~0.29°C  for
GMST. This increase led to an annual mean GMST level of
1.4°C–1.5°C  above  the  pre-industrial  level  (Forster  et al.,
2024).  Now,  2024  exceeds  those  values  (see  below).
Regional SST hotspots are associated with marine heatwaves
and have  major  consequences  for  marine  life  (Smith  et al.,
2023). The detailed causes of this year-to-year spike are still
debated,  but  possible  reasons  include  ENSO,  less  negative
aerosol  forcing,  a  record-low  planetary  albedo,  and  GHG-
forced changes that include changes in the atmosphere and
ocean circulation (e.g., Kuhlbrodt et al., 2024; Raghuraman
et al., 2024; Schmidt, 2024; Goessling et al., 2025).

To provide climate information and better serve climate
actions, this study updates the OHC and SST through 2024
and analyzes their global and regional changes based on multi-
ple datasets from major international data centers. The data
and  processing  are  introduced  in  section  2,  followed  by  a
global  analysis  in  section  3.  The  spatial  distributions  of
OHC and SST anomalies are presented in sections 4 and 5,
respectively,  and  in  section  6  for  OHC  regional  changes.
The  consequences  and  implications  of  the  observed  2024
changes are discussed in section 7. 

2.    Advances in data and processing
 

2.1.    Data

The OHC estimates are based on two gridded observa-
tional products and an ocean reanalysis product. The observa-
tional  products  include:  (i)  the  Institute  of  Atmospheric
Physics  (IAP)  at  the  Chinese  Academy of  Sciences  (CAS)
(Cheng  et al.,  2017a, 2024a; Zhang  et al.  2024);  and  (ii)

Copernicus  Marine  (von  Schuckmann  &  Le  Traon,  2011).
For  the  IAP/CAS  product,  the  primary  source  data  are
obtained from in situ measurements made available through
the World Ocean Database (WOD) (Boyer et al., 2018, Mis-
honov  et al., 2024a),  where  all  instrumental  data  are  used.
The  IAP/CAS  dataset also  uses  real-time  Argo  data  from
the  Observation  and  Research  Station  of  Global  Ocean
Argo  System  (Hangzhou).  The  IAP/CAS  dataset  is  a
monthly  gridded  product  with  a  1°  ×  1°  horizontal  resolu-
tion,  and  covers  the  ocean’s  upper  6000  m.  In  2024,  there
were some modifications to the data sources and data process-
ing techniques for the IAP/CAS product, which led to some
changes  in  OHC/SST  values  compared  with  the  previous
year’s  release  (Cheng  et al.  2024b).  The  changes  are
designed to incorporate more data and improve infilling meth-
ods and include the following:

(1) More in situ observations are incorporated into the
IAP/CAS analysis,  comprising  89 716 profiles  that  are  not
included  in  WOD.  These  additional  data  are  mainly  dis-
tributed in the Northwest Pacific Ocean, Indonesian Through-
flow  regions,  seas  around  China,  and  the  Arctic  after  the
1980s.

(2) There is an update to the quality control (QC) proce-
dure  (CODC-QC; Tan  et al.,  2023)  in  the  IAP/CAS analy-
sis, with additional QC. The latter applies an iterative vertical
gradient check and an iterative spike check to each QC-ed pro-
file until no further measurements are flagged.

(3) The climatology used in the IAP/CAS analysis has
been reconstructed and updated based on the updated QC pro-
cedure.

(4) Biases in ocean temperature profiles obtained by satel-
lite relay data loggers and time-depth recorders attached to
marine  mammals  have  been  corrected  following Gouretski
et al. (2024).  This  implementation  impacts  the  OHC in  the
polar regions from ~2005 to the present.

(5)  The  bias  correction  scheme  for  Nansen  Bottle
(BOT) data  has  also  been updated (Gouretski  et al.,  2022).
Here,  only  standard  level  BOT  data  have  been  corrected,
while in previous versions, we corrected all bottle data with
low resolution. Thus, the new correction is more conserva-
tive, leading to slightly weaker OHC trends from the 1950s
to ~1980.

For  the  Copernicus  Marine  data,  only  Argo  data  are
used  for  the  period  2005–2024  and  are  based  on  a  simple
box averaging scheme using a weighted mean applied on an
irregular observation field (von Schuckmann and Le Traon,
2011). Uncertainties in the Copernicus Marine data include
data processing methods and the choice of climatology. Non-
gridded  in  situ  observations  of  the  subsurface  temperature
from  the  Copernicus  Marine  product  CORA  are  used  as
inputs of the Copernicus Marine OHC data (EU Copernicus
Marine, 2023a; Szekely et al., 2024).

The global reanalysis dataset is CIGAR (CNR ISMAR
Global historical Reanalysis; Storto and Yang, 2024) devel-
oped  at  the  National  Research  Council  of  Italy,  which  is
based on the Nucleus for European Modelling of the Ocean
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(NEMO)-SI3 ocean  and  sea-ice  model  (version  4.0.7;
Madec  et al.,  2017)  implemented  at  a  horizontal  resolution
of about 1°, with enhanced meridional resolution in the tropics
[up to (1/3°)], and 75 vertical depth levels with partial steps
(Banier et al.,  2012). The model is forced at the surface by
the  ECMWF  ERA5  reanalysis  (Hersbach  et al.,  2020)  and
includes  daily-varying  freshwater  discharge  from  land
sourced  from  the  Japan  Meteorological  Agency’s  JRA-55-
do (Japanese 55-year Reanalysis: surface dataset for driving
ocean-sea ice models) (Tsujino et al., 2018). A three-dimen-
sional  variational  data  assimilation  scheme  (Storto  et al.,
2018)  with  nonlinear  QC  of  observations  (Storto,  2016)  is
adopted  to  ingest  all  in  situ  observations  from  the  EN4
dataset (Good et al., 2013). Additionally, surface relaxation
to COBEv2 SST observations (Ishii et al., 2005) and a large-
scale model bias correction scheme (Storto et al., 2016) com-
plete the reanalysis system. The dataset presented here is a
real-time extension of the ensemble CIGAR system (Storto
and Yang, 2024), called CIGAR–RT, where only four mem-
bers (out of the 32) are updated in real time, and Argo data
ingested  directly  from  the  Coriolis/Ifremer  Argo  Global
Data  Assembly  Centers  (GDAC)  replace  the  EN4  dataset
for December 2024. These four members differ in the bulk
formulas used for the air–sea flux calculation, the MBT and
XBT  bias  corrections  applied  within  the  EN4  dataset,  and
the data assimilation configuration, as detailed in Storto and
Yang (2024).

Additional  regional  reanalysis  data  (Escudier  et al.,
2021; Nigam  et al.,  2021)  (CMS-MEDREA)  are  used  to
assess  the  Mediterranean  OHC  change.  CMS-MEDREA
assimilated XBT, CTD, and Argo profiles,  integrating data
from  CMS  and  SeaDataNet  (https://www.seadatanet.org/)
and CMS satellite along-track sea level anomalies (Escudier
et al., 2020, 2021). This product is generated by a numerical
system  composed  of  a  hydrodynamic  model  supplied  by
NEMO  and  a  variational  data  assimilation  scheme.  The
model horizontal grid resolution is (1/24°) (about 4–5 km),
with 141 unevenly spaced vertical levels.

The SSTs in this study are based on three products: (1)
the first layer (1 m) of the IAP/CAS gridded product; (2) the
Extended Reconstructed Sea Surface Temperature (ERSST)
dataset, which is a global monthly SST dataset on a 2° × 2°
grid  from  January  1854  to  the  present  (Huang  et al.  2017;
2020); and (3) the Copernicus Marine (OSTIA, Good et al.,
2020; EU  Copernicus  Marine,  2023b, 2023c)  global  SST
reprocessed product from 1982 to the present.

The  data  sources  of  the  latest  version  (version  5)  of
ERSST  (ERSST.v5)  include  observations  from  ships  and
buoys from the International Comprehensive Ocean–Atmo-
sphere Data Set (ICOADS) Release 3.0.2, Argo floats above
5  m  depth,  and  the  Hadley  Centre  Ice-SST  version  2
(HadISST2)  ice  concentration.  ERSST.v5  has  improved
SST spatial and temporal variability by (a) reducing spatial
filtering  in  training  the  reconstruction  functions  of  the  140
empirical orthogonal teleconnections (EOTs), (b) removing
high-latitude  damping  in  EOTs,  (c)  adding  10  more  EOTs

in the Arctic, (d) using NMAT (nighttime marine air tempera-
ture) before 1985 and buoy-SST after 1985 as a reference in
correcting ship SST biases, and (e) using an unadjusted first-
guess instead of an adjusted first-guess in QC.

The  Copernicus  Marine  product  (OSTIA)  provides
daily gap-free maps of Foundation SST and ice concentration
(referred to as an L4 product) on a 0.05° × 0.05° horizontal
spatial  grid  resolution  by  using  in  situ  and  satellite  data.
This product provides the Foundation SST, with the tempera-
ture diurnal variability removed (Good et al., 2020).

Finally, we note that near real-time updates of the climate
datasets  and  time  series  put  additional  constraints  on  the
data  generators,  as  operationalizing  the  climate  records
means  handling  real-time  data,  the  quality  of  which  is
always not guaranteed. In future, we will explore the possibil-
ity to include more datasets if available. 

2.2.    Trend and uncertainty calculation

The  trends  in  this  study  have  been  estimated  by  the
LOWESS  approach  (Cheng  et al.  2022b),  i.e.,  we  apply  a
locally  weighted  scatterplot  smoothing  (LOWESS)  to  the
OHC time series (25-year window, equal to an effective 15-
year smoothing), and then the OHC difference between the
first and the end year is used to calculate the rate. The trend
uncertainty also follows the LOWESS approach based on a
Monte Carlo simulation and calculating ± 1.9 times the stan-
dard  deviation  (95% confidence  interval)  of  1000 rate  val-
ues. 

3.    The global ocean state in 2024
 

3.1.    OHC

The  global  OHC  changes  within  the  upper  2000  m
ocean layer since 1958 (Fig. 1) show that there has been an
unequivocal ocean warming trend in recent decades, regard-
less  of  the  data  sources  and  processing  techniques.  The
upper 2000 m of the world’s ocean has warmed on average
by 6.4 ± 0.3 ZJ yr−1 during 1958–2024 (IAP/CAS) (Fig. 1a).
The  95%  confidence  levels  are  calculated  using  the
approach  of  Cheng  et al.  (2022b)  (Section  2.2).  There  has
been a  two- to  threefold  increase  in  the  rate  of  OHC since
the late 1980s. For example, according to the IAP analysis,
the OHC trend for 1958–1985 is 2.9 ± 0.5 ZJ yr−1, and since
1986 the  OHC trend  is  roughly  three  times  as  large:  9.0  ±
0.5  ZJ  yr−1 (Fig.  1).  Since  2007,  the  upper  2000  m  ocean
warming rate has been 11.1 ± 1.1 ZJ yr−1, 10.1 ± 1.2 ZJ yr−1,
12.3  ±  2.0  ZJ  yr−1 for  the  IAP/CAS,  Copernicus  Marine,
CIGAR-RT datasets respectively. The increase in the OHC
rate in recent decades indicates a multidecadal acceleration
of  ocean  warming  (Cheng  et al.  2019a, 2024a; Loeb  et al.,
2021; Minière et al. 2023; Storto and Yang, 2024). Consis-
tency among these datasets in the past two decades indicates
the robustness of the ocean warming trends. For all datasets,
the  uncertainty  of  the  OHC  estimates  has  been  reduced  in
more  recent  periods  (green  bars  in Fig.  1),  because  of
improvements  in  the  global  ocean  observing  system

4 2024 OHC AND SST

 

  

https://www.seadatanet.org/


(notably Argo) in terms of better data quality and coverage.
The 2024 upper  2000 m OHC exceeds the 2023 value

by 16 ± 8 ZJ (IAP/CAS), 18 ± 7 ZJ (CIGAR-RT), and 40 ±

31 ZJ (Copernicus Marine, updated to November 2024), mak-
ing 2024 the hottest year on record for OHC (Figs. 1 and 2,
Table 1). A preliminary result from NCEI/NOAA data (Levi-
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Fig.  1. Global upper 2000 m OHC from 1958 through 2024 according to (a)  IAP/CAS, (b)
CIGAR-RT,  and  (c)  Copernicus  Marine  (1  ZJ  =  1021 J).  The  black  line  in  (a,  b)  shows
monthly values, and the histogram presents annual anomalies. The time series are relative to
the  1981–2010  baseline  for  IAP/CAS  and  CIGAR-RT  data,  and  the  2005  baseline  for  the
Copernicus Marine data. The 2005 values for IAP/CAS and CIGAR-RT data are 78 ZJ and
108  ZJ  relative  to  the  1981–2010  baseline,  respectively.  The  green  bars  indicate  the
uncertainty estimates from different datasets.
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tus  et al,.  2012)  indicates an  increase  of  12  ZJ  (subject  to
change  after  further  quality  control)  from  2023  to  2024  for
the  upper  2000  m OHC,  confirming  that  2024  is  another
record  year.  The  magnitude  of  the  increase  varies,  mainly
because the data sources and data processing differ (including
QC, bias correction, climatology choice, and mapping); see
Boyer et al. (2016) and Cheng et al. (2022a) for detailed dis-

cussion. However, the OHC increase is within the uncertainty
range and all the datasets show that the past five consecutive
years  have  been  the  warmest  on  record.  The  increase  in
OHC is compatible with changes in Earth energy imbalance
(EEI) from CERES (Loeb et al., 2021, Cheng et al., 2024a).

Besides the long-term trend, the global OHC generally
peaks shortly before,  and then declines around, an El Niño
event,  associated  with  ocean  heat  release  into  the  atmo-
sphere, mainly through increased evaporation and thus real-
ized  in  the  atmosphere  as  latent  heating  in  precipitation,
which drives teleconnections (Trenberth et al. 2002; Roem-
mich  and  Gilson,  2011; Cheng  et al.,  2019b)—as  can  be
seen,  for  example,  with the 2015/16 El Niño event (Mayer
et al., 2018). The ENSO perturbation on the global OHC is
generally  within  ±  10  ZJ,  and  a  slightly  lower  OHC value
than  the  previous  year  is  expected  after  an  El  Niño  event
(Cheng et al., 2019). In 2024, OHC anomalies increased for
the first eight months (the January–August average was ~20
ZJ higher than the 2023 mean) and decreased from August
to December (Figs. 1 and 2). This OHC evolution is consistent
with El Niño ocean heat loss effects combined with anthro-
pogenic global heating.
 

3.2.    SST

The global SST also shows a significant increase since
at least the 1950s (Fig. 3). The mean SST trend is 0.12°C ±
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Fig.  2. Global  upper  2000 m OHC changes  from 1955 through 2024 (units:  ZJ).  The thick
lines  are  the  annual  values,  and  the  thin  lines  are  the  monthly  values.  The  anomalies  are
relative  to  a  1981–2010  baseline.  The  within-year  variation  of  OHC  is  shown  in  the  inner
box, with 2024 values shown in red.

 

Table  1. Ranked  order  of  the  five  hottest  years  of  the  world’s
oceans since 1955.  The OHC values  are  for  the upper  2000 m in
units  of  ZJ,  relative  to  the  1981–2010  average.  Note  that  the
IAP/CAS values from 2020 to 2023 are about  6–8 ZJ lower than
the previous  release [Table  1 in Cheng et al.  (2024b)]  because of
the  update  to  the  Nansen  Bottle  bias  correction  that  leads  to  a
slightly  higher  IAP/CAS  1981–2010  baseline.  The  update  to  the
QC  and  climatology  construction  methods  are  responsible  for
differences of about 0–2 ZJ in these values. These changes do not
impact recent year-to-year increases.

Rank Year
OHC (IAP/CAS)

(units: ZJ)
OHC (CIGAR-RT)

(units: ZJ)

1 2024 297 336
2 2023 281 318
3 2022 265 313
4 2021 246 292
5 2020 231 275
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0.01°C (10 yr)−1 for  both  IAP/CAS and ERSST data  since
1958.  Regridded  satellite  data  (OSTIA  from  Copernicus
Marine)  indicate  a  warming  rate  of  0.15°C  ±  0.02°C
(10  yr)−1 since  1982,  consistent  with  other  in  situ

observation-based results during the same period. The relative
year-to-year  fluctuations  are  much  more  intense  for  SST
than the OHC record (Fig. 3 versus Figs. 1 and 2).

A  sharp  SST  increase  occurred  in  2023;  the  annual
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Fig. 3. Global SST changes from 1955 through 2024 (units °C). Upper panel: The thick lines
are the annual values, and the thin lines are the monthly values. The anomalies are relative to
a 1981–2010 baseline. The within-year variation of SST is shown in the inner box, with 2024
values shown in red. Lower panel: Global annual mean SST changes from three data products
(ERSST, Copernicus Marine, and IAP/CAS).
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mean 2023 SST was 0.24°C ± 0.02°C higher  than in  2022
(Fig. 3, IAP/CAS) (Raghuraman et al., 2024). This is the high-
est annual increase on record, with the second largest jump
of 0.22°C occurring from 1976 to 1977, which also accompa-
nied  a  La  Niña–El  Niño  transition.  The  record-high  SST
anomalies  started  from  April  2023  and  continued  to  July
2024, and the 2024 SST became the highest on record during
the  end  phase  of  the  El  Niño  event.  In  the  second  half  of
2024, the global SST started to decrease relative to the 2023
value, with the transition to a neutral ENSO phase (Fig. 3).
The  annual  mean  2024  SST  is  an  astounding  0.61°C  ±
0.02°C  (IAP/CAS)  higher  than  the  1981–2010  average
(0.58°C ± 0.02°C for ERSST, 0.58°C ± 0.07°C for Coperni-
cus Marine) (Fig. 3). Compared to the 2023 value, the 2024
SST is  0.07°C ±  0.02°C higher  for  IAP/CAS data  (Fig.  3;
0.05°C ± 0.02°C and 0.06°C ± 0.11°C for ERSST and Coper-
nicus Marine, respectively) (Table 2). 

4.    Spatial patterns of OHC changes in 2024

Spatial maps of the 2024 OHC anomaly relative to the
mean 1981–2010 conditions (Fig. 4) reveal patterns of long-
term ocean warming trends. Most of the ocean has warmed
profoundly,  with  some  areas  (much  of  the  Atlantic,  North
Pacific,  West  Indian,  the  Mediterranean  Sea,  and  northern
parts of the Southern Ocean) warming faster than the global
mean (Figs. 4 and 5). The northern flank of the Antarctic Cir-

cumpolar Current (ACC) shows the most intense and deep-
reaching ocean warming (Figs.  4 and 5),  and acts  as  a  key
region of ocean heat uptake from which heat is transported
northward  by  the  ocean  before  it  converges  in  the  down-
welling-dominated regions north of the ACC (Armour et al.,
2016; Cai  et al.,  2023).  The  Atlantic  basin  shows  stronger
and  deeper-reaching  area-averaged  OHC  change  than  the
Indian and Pacific basins, likely because the heat was trans-
ported out of the Indo-Pacific into the Atlantic basin (Cheng
et al.  2022a, Mishonov  et al., 2024b)  and  enhanced  heat
uptake in the Atlantic Ocean associated with changes in atmo-
spheric circulation and aerosols (Grist et al., 2010; McMoni-
gal et al., 2023; Ren et al., 2024). The cooling trends in the
subsurface  tropical  and  subtropical  regions  of  the  Pacific
and Indian basins (Figs. 4 and 5) can be linked to the accelera-
tion  of  the  wind-driven  ocean  circulation  (Qu  et al.  2019;
Hu  et al.  2020),  which  leads  to  increased  low-latitude
upwelling and cooling and freshening of major intermediate
water  masses  (except  in  the  South  Atlantic)  (Wong  et al.
1999; Durack and Wijffels 2010; Jiang et al., 2024) (Figs. 4
and 5). Detailed discussion on the long-term OHC trend pat-
terns is provided in the review by Cheng et al. (2022a).

Compared with the year 2023, the 2024 OHC shows a
cooling band along the equator in the Pacific Ocean (mini-
mum < −3 GJ m−2, 1 GJ = 109 J) and warming in the subtropi-
cal  regions  in  both  hemispheres  (maximum  >  2  GJ  m−2)
(Fig. 6), indicating that heat is discharged from the equatorial

 

Table 2. Ranked order of the five hottest years of the global mean SST anomaly since 1955 (Since 1981 for Copernicus Marine data),
relative to the 1981–2010 baseline.

Rank Year
SST anomaly (IAP/CAS)

(units: °C)
SST anomaly (ERSST5)

(units: °C)
SST anomaly (Copernicus Marine)

(units: °C)

1 2024 0.61 0.58 0.58
2 2023 0.54 0.53 0.52
3 2019 0.39 0.37 0.40
4 2016 0.38 0.40 0.36
5 2020 0.37 0.36 0.39
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Fig. 4. The annual OHC anomaly in 2024 relative to a 1981–2010 baseline for the IAP/CAS
data; units: 109 J m−2 [data updated from Cheng et al. (2024a)].
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regions into the subtropics (Cheng et al., 2019b). This is con-
sistent  with  the “recharge–discharge  oscillator” paradigm,
which  is  one  proposed  mechanism  for  ENSO  formation
(Cane and Zebiak 1985). Strong warming anomalies are mani-
fested at about 40°N in the central North Pacific Ocean (maxi-
mum ~2 GJ m−2, Fig.  6).  The Atlantic Ocean shows warm
anomalies  at  low  latitudes  and  cool  anomalies  along  40°S
and 40°N, a  typical  response pattern of  the Atlantic  Ocean
to ENSO [see Fig. 2 of Cheng et al. (2019b)].

The Indian Ocean shows warm anomalies in the tropical
band  (maximum > 2  GJ  m−2)  and  cold  anomalies  south  of
10°S (minimum < −1 GJ m−2) (Fig. 6)—a pattern characteriz-
ing the lagged response to the 2023–2024 El Niño. For exam-
ple,  the  enhanced  warming  of  the  southwestern  tropical
Indian Ocean is caused by anticyclonic wind anomalies gener-
ated  through  El  Niño’s  atmospheric  teleconnections  (Xie
et al.,  2002).  Upwelling  waves  in  the  western  tropical
Pacific  during El  Niño can propagate  into  the  southeastern
Indian Ocean through the Indonesian Seas and cause cooling
anomalies there (Cai et al., 2005; Li et al., 2020) in associa-
tion with a weakened Indonesian Throughflow (ITF, Mayer
et al., 2014).
 

5.    Spatial patterns of SST changes in 2024

The  spatial  pattern  of  SST  change  (2024  SST  relative
to a 1981–2010 baseline) (Fig. 7) is distinct from the upper
2000 m OHC (Fig. 4). This pattern mainly reflects the SST
changes over the past three decades, showing a widespread
ocean surface warming in most ocean areas. The long-term
SST  increase  is  mainly  driven  by  GHG  forcing  (Bindoff
et al.,  2019).  The  SST increase  is  stronger  in  the  Northern
Hemisphere than in the Southern Hemisphere (von Schuck-
mann  et al.,  2024).  The  relative  warming  of  the  Northern
Hemisphere  may  be  linked  to  the  abatement  of  industrial
aerosol  emissions  by  China  since  ~2010  and  regulation  of
shipping  sulfur  emissions  (Wang  et al.,  2023; Yoshioka
et al.,  2024).  The  warmest  sea  surface  anomalies  occur
around 40°N in the Northwest Pacific Ocean (with maximum
anomalies  >3°C)  and  North  Atlantic  Ocean  (maximum  >
2°C),  consistent  with  OHC (Fig.  7 compared  with Fig.  4).
Some regions  of  the  Southern  Ocean  show cold  anomalies
(Fig. 7). Multiple hypotheses have been proposed to explain
recent  cooling  trends,  including  the  freshwater  input  from
Antarctic  ice-sheet  melt,  northward  sea-ice  transport,  and
Southern Ocean natural variability (Dong et al., 2023; Simp-
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Fig. 5. Vertical section of the zonal mean ocean temperature trends within 1958 to 2024 from the sea surface to 2000
m. The trends are calculated using the LOWESS approach (Cheng et al., 2022b) with a span width of 25 years (the
effective  time  scale  is  ~15  years).  Shown  are  the  zonal  mean  sections  in  each  ocean  basin  organized  around  the
Southern Ocean (south of 60°S) in the center. Black contours show the associated climatological mean temperature
with  intervals  of  2°C  (in  the  Southern  Ocean,  1°C  contour  intervals  are  used)  [data  updated  from  Cheng  et al.
(2024a)].
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kins et al., 2024).
The  2024–23  difference  in  the  SST  pattern  (Fig.  8)

reveals  strong  cooling  (< −2°C)  in  the  middle  and  eastern
part  of  the  Pacific  Ocean,  associated  with  warming  in  the
western  Pacific,  tropical  Indian,  and  Atlantic  ocean  basins
(with a maximum of 1°C). This pattern is likely associated
with  the  strengthening  of  the  tropical  trade  winds  after  El
Niño,  which  triggers  ocean  waves  and  thermocline  feed-
back,  causing  strengthened  upwelling  and  SST  cooling  in
the  eastern  Pacific  Ocean.  The  changes  of  the  thermocline
and  Hadley  and  Walker  circulation  are  likely  to  be  key
drivers  of  the  Indian  and  Atlantic  ocean  changes  (Cheng
et al. 2019b).

There  are  regions  of  warming  in  the  Southern  Ocean
within  35°–70°S  and  180°–60°W  with  maximum  SST
increases of ~2°C from 2023 to 2024 (Fig. 8). Such changes
are also reflected in the OHC changes (Fig. 6, ~3 GJ m−2),
indicating that the warm anomalies penetrate into the ocean
interior, marking a key region of ocean heat uptake in 2024.

 

6.    Regional OHC changes in 2024

Regional OHC changes reveal the impacts of both anthro-
pogenically  forced  long-term  changes  and  variability  from
interannual  to  decadal  scales  (Fig.  9).  Six  out  of  the  eight
ocean  regions  investigated  in Fig.  9,  including  the  Indian
Ocean, tropical Atlantic, Mediterranean Sea, North Atlantic,
North Pacific, and Southern Ocean, show record-high OHC
values in 2024.

The  Indian  Ocean  shows  a  sharp  OHC  increase  from
2023 to  2024,  with  a  10.3  ZJ  (0.35  GJ  m−2)  increase  from
2023  to  2024  (Fig.  9).  A  similar  magnitude  of  increase
occurs from 2018 to 2019 (Fig. 9), followed by a big OHC
decrease  from  2020  to  2022.  These  substantial  interannual
fluctuations  result  partly  from the  El  Niño  that  matured  in
2023–2024 (and 2019) that drove a basin-scale warming of
the tropical Indian Ocean through teleconnections on surface
winds  and  cloud  cover  (Trenberth  and  Zhang  2019)  and
changes in the ITF. Both atmospheric and oceanic processes
impact the Indian Ocean energy budget (Mayer et al. 2014).
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Fig. 6. Differences of annual mean upper 2000 m OHC values between 2024 and 2023, based
on (a)  IAP/CAS analysis  and  (b)  CIGAR-RT .  Units:  109 J  m−2 [data  updated  from Cheng
et al. (2024a)].
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The Southern Ocean shows a continuous long-term warm-
ing trend since the 1950s, with smaller interannual variation
compared  with  many  other  regions  shown  in Fig.  9.  The
2024–2023 OHC increase is  2.5  ZJ (0.03 GJ m−2),  smaller
than  the  mean  Southern  Ocean  warming  trend  in  the  past
two  decades.  The  recent  interannual  fluctuations  are  likely
associated with ENSO (Wang et al. 2022).

There  has  been  a  striking  warming  trend  of  the  North
Pacific  between  30°N  and  65°N  since  the  1990s  (Fig.  9),
mainly  in  the  mode  and  intermediate  water  masses  of  the
North Pacific (Li et al. 2023), which has led to wide-ranging
impacts such as an increased occurrence of marine heatwaves
(Chen  et al.  2023)  and  socioeconomic  stress  (Smith  et al.
2021).  In  2024,  warming  continued,  with  an  annual  OHC
increase of 3.8 ZJ (0.14 GJ m−2)  compared to 2023, which
is larger than the mean warming rate of this region over the
past  two  decades  (0.06  GJ  m−2 yr−1),  mainly  because  the
OHC in 2023 was lower than normal (Fig. 9).

The Mediterranean Sea is the region showing the most
intensive  warming  rate,  with  an  area-averaged  OHC
increase of 0.41 GJ m−2 (1.1 ZJ) from 2023 to 2024, higher
than all the other seven regions in Fig. 9. The 2023–24 shift

is around fivefold larger than the mean warming rate of this
region during the past two decades and higher than the previ-
ous record shifts from 2022 to 2023 and from 1993 to 1994
of 0.32 and 0.31 GJ m−2, respectively. As both global analysis
and  regional  reanalysis  datasets  show  very  similar  OHC
shifts in 2024, the signal is very robust.

The tropical Atlantic and North Atlantic also continued
their warming trends in 2024, with annual OHC increases of
0.03 GJ m−2 (0.5 ZJ) and 0.02 GJ m−2 (0.7 ZJ) compared to
2023, respectively (Fig. 9). The annual increases are generally
consistent  with  the  mean  OHC  rate  over  the  past  two
decades. However, the SST in the North Atlantic was highly
anomalous in 2024, and thus the ocean warming was mainly
located  near  the  sea  surface—similar  to  2023  conditions
[see Fig. 9 in Cheng et al. (2024b)]. The 2024 Atlantic hurri-
cane season was very active and extremely destructive.

Two  other  regions—the  Northwest  Pacific  (the  seas
around China) and the ITF regions—show large interannual
fluctuations in the OHC time series because of the dominant
role of ENSO (Fig. 9). Even so, the 2024 OHC in these two
regions  reaches  top-10 values.  Both regions  show decadal-
scale variations as well, i.e., OHC increased from the early
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Fig. 7. The annual SST anomaly in 2024 relative to a 1981–2010 baseline for (a) ERSST and
(b) IAP/CAS data separately. Units: °C.
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1990s to the early 2010s (Jin et al. 2024). This decadal varia-
tion has  been linked to  the  Interdecadal  Pacific  Oscillation
(IPO):  the  negative  phase  of  the  IPO  leads  to  an  OHC
increase  in  the  ITF  region  by  driving  enhanced  westward
ocean  heat  transport  (Capotondi  et al.,  2023; Jin  et al.
2024). In the Banda Sea from 1993 to 2022, there is a dis-
cernible trend of barrier layer thickness deepening by 10 m,
accompanied by a reduction in mixed layer depth by 30 m,
which  correlates  with  the  increase  of  OHC  (Ismail  et al.,
2024). 

7.    Concluding remarks

Based on multiple datasets produced by several indepen-
dent  research  groups,  this  paper  provides  updates  of  SST
and OHC for the year 2024. We find that the ocean continued
to warm globally in 2024, not only at the surface (SST) but
also across the upper 2000 m (OHC). The warming rate has
increased in recent decades, with a faster rate of warming evi-
dent  since  around  1990.  Regional  warming  patterns  reveal
that  six  out  of  eight  regions  investigated  in  this  study
reached record levels of their upper 2000 m OHC in 2024.

The sharp increase of SST in 2023 has been heavily dis-
cussed in recent literature (e.g., Kuhlbrodt et al., 2024; Raghu-
raman  et al.,  2024; Schmidt,  2024; Goessling  et al.,  2025).
It was partially associated with the strong El Niño event, but
the  post-event  recovery  has  been  modest.  However,  recent
warming  levels  are  not  a  surprise  when  considering  the
record-high OHC year after year, reflecting a positive EEI.
Carbon  dioxide  concentrations  at  Mauna  Loa,  Hawaii,
where  measurements  have  been  taken  since  1958,  also
reached  record  levels  in  2024  (NOAA  2024).  Changes  in
atmospheric aerosols (visible pollution), which affect cloud
coverage  and  brightness,  are  likely  exacerbating  warming
(Gettelman et al., 2024; Wang et al., 2024; Goessling et al.,
2025).

Ocean warming substantially impacts the major Earth sys-
tem components. For example, ocean warming accounts for
more than 1/3 of the global mean sea level rise through ther-
mal  expansion,  dominating  regional  sea  level  patterns
(Gulev et al., 2021). The 16 ZJ increase of OHC in 2024 com-
pared  with  2023  corresponds  to  a  steric  sea  level  rise  of
~1.0 mm, with a total of ~54 mm since 1960. Sea level rise,
in turn, increases the risk of coastal infrastructure and habitats
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Fig. 8. (a) Differences in annual mean upper SST values between 2024 and 2023, based on
(a) ERSST and (b) IAP/CAS analysis. Units: °C.
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being impacted  by saltwater  intrusion,  coastal  erosion,  and
flooding in low-lying regions (Oppenheimer et al., 2019).

Ocean  warming  also  exacerbates  extreme  weather  and
ocean events. These include intensification of typhoons, hurri-
canes, and marine heatwaves (Trenberth et al., 2018; Capo-
tondi  et al.,  2024).  The  extra  heat  and  moisture  that  enters
into the atmosphere make storms more severe, with heavier
rain, stronger winds, and more significant flooding (Knutson
et al. 2010; Marsooli et al. 2019; Kossin et al. 2020). Warm-
ing also leads to a more rapid intensification of storms and
slower decay after landfall, increasing flooding risks related
to  tropical  cyclones  (Bhatia  et al.  2018, Bhatia  et al.  2019;
Li and Chakraborty 2020). Warming is also a factor that can
cause  ocean  deoxygenation  (Oschlies  et al.,  2018).  Deoxy-
genation  itself  is  a  significant  hazard  for  not  only  marine
life and ecosystems, but also for humans and our terrestrial
ecosystems (Bindoff et al., 2019).

According to projections based on the state-of-the-art cli-
mate  models  (Cheng  et al.  2024a),  until  we  reach  net-zero
emissions,  ocean  warming  acceleration  trend  will  continue
(IPCC,  2021),  and  OHC  will  likely  continue  to  break
records.  Better  monitoring  and  understanding  of  the  ocean
form the basis for fostering action to assess and combat cli-
mate change, to support adaptation management, and sustain-
able and climate-resilient pathways (von Schuckmann et al.,
2020; Abraham and Cheng, 2022; Evans et al., 2024).
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