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High-amplitude quasi-stationary atmospheric Rossby waves with zonal wave numbers 6–8 associated 
with the phenomenon of quasi-resonant amplification (QRA) have been linked to persistent summer 
extreme weather events in the Northern Hemisphere. QRA is not well-resolved in current generation 
climate models, therefore, necessitating an alternative approach to assessing their behavior. Using a 
previously-developed fingerprint-based semi-empirical approach, we project future occurrence of QRA 
events based on a QRA index derived from the zonally averaged surface temperature field, comparing 
results from CMIP 5 and 6 (Coupled Model Intercomparison Project). There is a general agreement 
among models, with most simulations projecting substantial increase in QRA index. Larger increases 
are found among CMIP6-SSP5-8.5 (42 models, 46 realizations), with 85% of models displaying a 
positive trend, as compared with 60% of CMIP5-RCP8.5 (33 models, 75 realizations), with a reduced 
spread among CMIP6-SSP5-8.5 models. CMIP6-SSP3-7.0 (23 models, 26 realizations) simulations 
display qualitatively similar behavior to CMIP6-SSP5-8.5, indicating a substantial increase in QRA 
events under business-as-usual emissions scenarios, and the results hold regardless of the increase 
in climate sensitivity in CMIP6. Projected aerosol reductions in CMIP6-SSP3-7.0-lowNTCF (5 models, 
16 realizations) lead to halting effect in QRA index and Arctic Amplification during the 1st half of the 
twenty-first century. Our analysis suggests that anthropogenic warming will likely lead to an even 
more substantial increase in QRA events (and associated summer weather extremes) than indicated by 
past analyses.

The prospective increase in the frequency and/or severity of various types of extreme weather events, such as 
heat waves, severe storms, floods, and drought, represents one of the primary societal threats of human-caused 
climate change. A number of studies (e.g. 1 and 2) have suggested that human-caused warming may result in 
extremes that have no prior analog observed. The most recent assessment of the Intergovernmental Panel on 
Climate Change (IPCC)3 emphasizes the increased incidence of simultaneous extreme events in multiple regions 
and locations (“compound extreme events”), placing increased stress on civil infrastructure for disaster relief and 
mitigation.

A better understanding of the underlying physical mechanisms can form the basis for improved projections 
of extreme weather events under anthropogenic warming4, aiding the assessment and potential mitigation of 
associated extreme weather risk. Importantly, an array of extreme, persistent summer weather events in recent 
decades are thought to have either directly or indirectly resulted from the atmospheric phenomenon of quasi-
resonant amplification (QRA) of planetary waves. These events include European heat waves in 2003, 2006, 2015 
and 2018, the Russian heat wave and Pakistan flood in 2010, the Texas heat wave and drought in 2011, record 
Balkan floods in 2014, Alberta wildfire in 2016, and the 2021 Pacific Northwest heatwave5–10
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Atmospheric models are valuable tools for investigating individual teleconnections and their underlying 
causes. Studies examining the change in frequency of certain high-impact circulation patterns, such as amplified 
and persistent quasi-stationary waves in the boreal summer jet stream, have been conducted using reanalysis 
data and climate models, indicating the influence of resonant waves on heat and other extremes11–18.

A theoretical framework for diagnosing the impact of climate change on QRA was provided by Petoukhov et 
al. 19 and further developed by Kornhuber et al. 20,21. The basic concept is that planetary-scale waves with zonal 
wave numbers 6 or higher can exhibit unusually high-amplitude when quasi-stationary free waves with the 
same (or close to the same) wave number are trapped within midlatitude waveguides. These waves are amplified 
by a quasi-resonance mechanism. The occurrence of QRA is closely associated with a prominent double-jet 
configuration, enhanced atmospheric blocking, and weakened upward wave propagation12. Favorable conditions 
for occurrence of QRA is expected to increase, likely linked to Arctic amplification22. This is due various 
processes, including snow- and ice-albedo feedbacks associated with anthropogenic greenhouse warming.

However, it is still challenging for current climate models to accurately capture high wavenumber planetary 
wave dynamics, which are crucial for detecting QRA-favorable conditions. The uncertainty in the atmospheric 
midlatitude circulation simulated by CMIP5 and CMIP6 models related to jet stream, Arctic amplification, and 
associated impacts on extremes was noted also in other studies23–28, that directly link to the QRA framework 
diagnoses based on daily variations of temperature and wind fields19–21. Despite CMIP6 models displaying some 
reductions in bias compared to earlier (CMIP3 and CMIP5) model intercomparisons, mostly due to increased 
model resolution29,30, the biases relevant to planetary wave dynamics remain substantial, including e.g. blocking 
frequencies in regions of the Northern Hemisphere18,31.

In contrast, the models reasonably simulate changes in global surface temperature patterns. For these reasons, 
Mann et al. 22,32 proposed a semi-empirical approach, namely using a temperature-based fingerprint, to assess 
possible QRA changes with guidance from climate models. This approach leverages the robust relationship 
between the meridional variation in surface temperature and upper-level zonal winds within regions where 
QRA phenomena have been identified19.

From the linearized quasigeostrophic barotropic potential vorticity equation (see Eq. 1 in 32), we see that 
wave dynamics underlying QRA are dependent on the second derivative of the zonal mean zonal wind (ū) with 
latitude (d2ū/dφ2). Moderate model biases in ū(φ) propagate to substantial (i.e. several hundred percent) biases22 
after two subsequent numerical differentiations, making it difficult for even state-of-the-art climate models to 
accurately resolve this term.

The current models are thus unable to accurately resolve the real-world wave dynamics underlying 
QRA. Mann et al. 32 make use of the fact that ū(φ), through the thermal wind relationship, is closely related to 
the meridional temperature profile T(φ), developing a temperature-based fingerprint for QRA, based on the 
anomalous temperature profile T’(φ) associated with QRA, that can be obtained from modern reanalysis data.

We first analyze the CMIP5 and CMIP6 multimodel historical ensembles (see Materials and Methods) to 
assess the relative faithfulness with which the two relevant quantities, zonal mean T(φ) and zonal mean d2ū(φ)/
dφ2, are reproduced in the climate models relative to ERA5 reanalysis, testing whether this indirect approach to 
assessing QRA likely to be more reliable than a direct analysis of QRA events in the model simulations (Table 
1). We observe a small ensemble mean error of roughly 0.2% for T(φ) for both CMIP phases, or, alternatively, 
a still modest roughly 21% (23%) ensemble mean error for dT(φ)/dφ in CMIP6 (CMIP5), respectively. For 
comparison, we obtain an extremely large mean error for ensemble members in d2ū(φ)/dφ2, 341% in CMIP5, and 
285% in CMIP6. The models’ ensemble spread for T(φ), dT(φ)/dφ, and d2ū(φ)/dφ2 is shown in Supplementary 
Figures S31-S40.

We conclude that while direct evaluation of QRA behavior is not achievable using the currently available 
multimodel CMIP ensembles, our indirect method, which uses the anomalous latitudinal temperature profile 
T’(φ) as a proxy for QRA behavior in the models, produces relevant findings. Naturally, one presumption 
behind our methodology is that the fingerprint generated by previous observations will continue to hold true 
in the future, connected to the assumption that planetary waves stimulated by orographic or thermal forces 
will maintain a similar structure. For the analysis, two distinct time intervals were chosen, the first and second 
half of the twenty-first century, under the experiments CMIP6-SSP5-8.5, CMIP6-SSP3-7.0, CMIP6-SSP3-7.0-
lowNTCF, and CMIP5-RCP8.5.

RMSE related to ERA5
Mean error for ensemble 
members Error for ensemble mean

CMIP5 CMIP6 CMIP5 CMIP6

T(φ) 0.4% (150) 0.5% (66) 0.2% (150) 0.2% (66)

dT(φ)/dφ  − 33.8% (150)  − 30.6% (66)  − 23.3% (150)  − 20.6% (66)

ū(φ) 28.0% (74) 17.6% (66) 19.0% (74) 10.7% (66)

dū(φ)/dφ 192.4% (74) 172.8% (66) 93.4% (74) 120.8% (66)

d2ū(φ)/dφ2  − 341.3% (74)  − 285.3% (66)  − 160.0% (74)  − 205.2% (66)

Table 1.  Temperature T(φ) and zonal wind ū(φ) RMSE for CMIP5 (1979–2005) and CMIP6 (1979–2014) 
Historical multimodel ensemble over 25N-75N (2.5°) JJA seasonal means compared to ERA5 (1979–2014). 
In brackets is the number of models.The RMSE presented is the RMSE divided by the respective reference 
variable, and multiplied by 100 to obtain the percentage RMSE.
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Results
Real-world QRA events as far back as the late 1940s can be diagnosed from reanalysis data5,19,20,22. QRA-
favorable conditions adopted here consist of cases in which planetary waves with numbers 6–8 stay stationary for 
a long duration (10 ≤ duration ≤ 15 days), identified in confined zonal mean profile to the latitude range (25°N 
to 75°N). The annual average number of events has increased (Fig. 1) from an average of roughly 2 events per 
year in the late 1970s to roughly 3 per year recently, constituting an increase by roughly 50% over the past four 
decades. The trend is not statistically significant (p = 0.166 for a one-sided test) owing to the substantial year-to-
year variability and short nature of the dataset. However, a recent extension of the analysis using ERA5 data back 
to 195033 provides evidence for a statistically-significant (p < 0.01) trend over the past half century. Mann et al.22 
find that the signal of human-caused climate change in the QRA fingerprint has only recently emerged from the 
noise of natural variability.

Figure 2 compares the multimodel mean latitudinal variation for JJA seasons in warming amplitude between 
CMIP5 and CMIP6 for the high-end emissions scenario (RCP8.5/SSP5-8.5 respectively). We see that there is 
overall greater warming predicted by CMIP6 models (which has been widely noted - 34) but, importantly, greater 
latitudinal spread of warming, with high latitudes warming by over 2 ℃ more in CMIP6 than in CMIP5. This 
is also evident in Fig. 3, which includes results from a mid-range (SSP3-7.0) emissions scenario from CMIP6. 
Even that lower scenario shows greater warming and latitudinal spread in CMIP6 than in the CMIP5 high-range 
scenario. Mann et al.22,32 showed that, while the latitudinal temperature fingerprint associated with QRA for JJA 
seasons has more structure than a simple Arctic amplification index, it does project substantially onto such an 
index. Accordingly, we find considerably greater increases in the multimodel mean QRA index in the CMIP6 
high-end scenario than in the CMIP5 high-end scenario (Fig. 4). Over the twenty-first century we see a roughly 
40% increase in CMIP5 but more than doubling (109%) in CMIP6. Consistent with past work, the QRA index 
projects onto a “double jet” pattern, where upper-level westerly flow is greatly reduced in the mid-latitudes but 
not subtropical or sub-polar latitudes (Fig. 5).

It is important to note that the enhanced warming in CMIP6 projections is largely the result of a relatively 
small number of outlier models with very high climate sensitivity34,35. It is therefore instructive to examine the 
variation of results across the ensemble (Supplementary Figures S6-S9 – Temperature anomaly for JJA seasonal 
means for historical and future simulations).

In Fig. 6, we examine the distribution of trends in both CMIP5 and CMIP6, focusing on two distinct time 
intervals corresponding to the QRA index for JJA seasonal mean on the first (2015–2050) and 2nd (2051–2100) 
half of the twenty-first century during which aerosol reductions play a substantial and modest role, respectively. 
As noted by32, substantial projected anthropogenic aerosol reductions in summer lead to near zero or even 
negative QRA trend during the 1st half of the twenty-first century in the CMIP5 projections, as well enhanced 
mid-latitude warming and reduced polar amplification, mitigating increases in QRA activity. Very few models 
in CMIP6 however are seen to show such behavior. In CMIP5, only one realization among the entire ensemble 
exhibited a trend exceeding 0.1 events/year. For CMIP6, 5 realizations show such trends, and the largest trend 

Fig. 1.  Number of QRA events for JJA wave numbers from 6 to 8 for the ERA5 reanalysis. The linear trend 
over the period 1979–2023 is shown (the indicated p value is based a one-sided test given the hypothesis that 
greenhouse warming increases QRA occurrence).
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Fig. 3.  Arctic amplification (AA) from Temperature anomaly JJA seasonal means for CMIP5 and CMIP6. This 
anomaly follows 22. The values represented as bars were calculated by the mean of the AA over the periods 
2015–2050 and 2051–2100.

 

Fig. 2.  Temperature anomaly JJA seasonal means for CMIP5-RCP8.5 and CMIP6 Historical and SSP5-8.5. 
This anomaly follows 22.
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among all realizations (~ 0.2 events/year) is roughly twice as large. For the latter half of the twenty-first century, 
where greenhouse warming dominates, CMIP6 once again shows far greater trends in QRA index among most 
models, with a small number of realizations in particular (5) showing considerably greater increase in QRA 
index than was observed in any of the CMIP5 realizations.

To verify the robustness of the QRA projections, given the greater climate sensitivity of some CMIP6 models, 
we performed a filtering case where we excluded from the multimodel mean all models with Effective Climate 
Sensitivity (ECS) above 4.7 ℃ and QRA trends within the upper and lower 10th percentile of results (represented 
by a blue marker in Fig. 6). The QRA trend after that filtering resulted in a difference (in relation to the case 
without filter) of 24.4% in CMIP6-SSP5-8.5 (seven models with ECS > 4.7 ℃ removed) for the first time-slice 
analyzed (2015–2050, Fig. 6C), and for the second (2051–2100, Fig. 6D) the difference was 8.1%, confirming 

Fig. 5.  Multimodel projection of QRA index from Temperature JJA seasonal means onto zonal mean zonal 
wind (ū) anomalies for CMIP5 and CMIP6.

 

Fig. 4.  QRA index from Temperature JJA seasonal means for CMIP5 and CMIP6.
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the consistency of the multimodel mean against outliers for the higher temperature change period. The other 
scenarios vary from 8% (CMIP5-RCP8.5 2015-2050, Fig. 6A) difference in QRA trend, to 5.4% (CMIP5-RCP8.5 
2051-2100, Fig. 6B).

Additionally, treating the results in two different cases of filtering for the multimodel mean, first case 
excluding only models with ECS > 4.7 ℃, and the second case only the models with QRA trend (Fig. 6) upper 
10th percentile, and lower 10th percentile, we found that for the first case CMIP6-SSP5-8.5 has the differences 
of 24.4% (2015–2050, Fig. 6-C) and 15.4% (2051–2100, Fig. 6D), and in the second case 14% (Fig. 6C) and 
4% (Fig. 6D), respectively. For CMIP5-RCP8.5 multimodel mean, no differences were found for the first case in 
relation to non-filtered multimodel mean, and 8% (2015–2050, Fig. 6A) and 5.4% (2051–2100, Fig. 6B) for the 
second case. CMIP6-SSP3-7.0 has fewer models compared to the other scenarios, for the time-slice 2015–2050 
the differences were 5.1% for both cases, and 14.6% and 7% in 2051–2100, for the first and second cases. This 
indicates that independent of the few models with high ECS, the multimodel mean is still robust.

These filtered results are consistent with the spatial patterns of warming which show considerably greater 
polar amplification of warming in CMIP6 during both sub-intervals of the twenty-first century, with the largest 
QRA-trending models showing the greatest polar amplification (Fig. 7).

Fig. 6.  Average QRA index from Temperature JJA seasonal means for CMIP5-RCP8.5 (A, B) and CMIP6-
SSP5-8.5 (C, D). The list of CMIP5 models is shown below frame (B), respectively CMIP6 models below 
frame (D). Ensemble-Mean Filtered (blue marker) refers to the mean over all models excluding models in 
ECS > 4.7 ℃, upper 10th percentile (red markers), and lower 10th percentile (green markers).
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Discussion
We compare results of high emission scenarios from CMIP5 and CMIP6 climate projections, using a previously 
developed fingerprint-based semi-empirical approach to project future occurrence of QRA events based on a 
QRA index derived from the zonally averaged surface temperature field. Models are in general agreement, with 
most simulations predicting a significant increase in QRA index, in accordance with past work demonstrating 
increased QRA occurrence with greenhouse warming13,14,18,31. The new generation of models introduces a 
greater spread in the results; however removal of outliers (models with high sensitivity to forcing) reveals the 
multimodel mean behavior to be robust.

The new CMIP6-SSP5-8.5 ensemble shows considerably greater projected Arctic amplification in the future 
than its RCP8.5 counterpart. Amplification is seen even in the first half of the 21st Century where the RCP8.5 
projections show no clear pattern of polar amplification of summer warming. Similar behavior appears also 
in CMIP6-SSP3-7.0 and CMIP6-SSP3-7.0-lowNTCF (Fig.  3).  Mann et al.32 found a similar pattern when 
comparing RCP8.5 to 1PCTCO2 simulations, which they attributed to the aerosol decline in RCP8.5 in the early 
twenty-first century as discussed above.

It is useful to compare the CMIP6-SSP3-7.0-lowNTCF scenario with low aerosol forcing (though consisting 
of a modest number of realizations: five models, 16 realizations) with the otherwise similar radiative forcing 
scenario CMIP6-SSP3-7.0. The high aerosol simulations driven by CMIP6-SSP3-7.0 show a increase in both 
Arctic Amplification and QRA index during the twenty-first century (Figs. 3,4). In contrast, when aerosols are 
rapidly reduced in the first half of twenty-first century as in the CMIP6-SSP3-7.0-lowNTCF scenario, the model 
responses highlight the role played by aerosol loading reduction, as noted previously32,36 which competes with 
the effects of greenhouse warming, reducing Arctic amplification, and mitigating potential increases in QRA-
related persistent extreme weather events.

In both aerosol scenarios, the second half of the twenty-first century has the remarkable dominance role 
of the greenhouse’s radiative forcing, reaching 7.0 W/m2, while estimative of total aerosol forcing contribution 
ranges from −2.0 to −0.4 W/m2 37,38,39,40.

Fig. 7.  Mean surface temperature trend patterns (JJA seasonal means) for CMIP5-RCP8.5 and CMIP6-
SSP5-8.5. (A, D, G, J) multimodel ensemble, (B, E, H, K) most negative QRA-trending ensemble members, 
and (C, F, I, L) most positive QRA-trending ensemble members (“most” is defined as upper 10th percentile of 
multimodel ensemble).
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The improvement in resolution and components in CMIP6 aiming to represent all relevant physical 
processes response to CO2, leads on the other hand to increased ECS. CMIP5 ECS values diagnosed from 
CO2 quadrupling experiments ranged from 2.1 to 4.7 ℃41,42, and studies including CMIP643 noticed values of 
ECS exceeding 4.7 ℃, as registered for CanESM5.0.3 (44, ECS = 5.64 °C), CESM2 (45, ECS = 5.15 ℃), CNRM-
CM6-1 (46, ECS = 4.90 ℃), E3SMv1 (47, ECS = 5.31 ℃), HadGEM3-GC3.1 (ECS = 5.55 ℃) and UKESM1 (48, 
ECS = 5.36 ℃). Additionally,  Zhao49 classified GFDL-CM4 (ECS = 3.89 ℃) as having a relatively high ECS 
model. High ECS values in these models mentioned (also included in our analysis) are at least partly attributed 
to larger cloud feedbacks than their predecessors (50 – reference for the ECS values cited above).

The spread of models within the ensemble among our results in CMIP6 warming projections (Supplementary 
Figures S6-S9) is largely due to a relatively small number of outlier models with very high climate sensitivity.

We removed from the multimodel mean all models with high ECS (above 4.7 ℃), to confirm that the QRA 
projections are not strongly influenced by model sensitivity. The results from that show a 24.4% maximum 
influence of the remarkable models in the ensemble QRA trend for the first half of the century (Fig. 6), while the 
differences for the high emissions simulations (15.4% for 2051–2100) reinforce that the conclusions regarding 
QRA index are not dependent upon a small number of models with very high climate sensitivity.

Therefore, there is agreement among models under the considered scenarios, and the majority of simulations 
project a significant rise in the QRA index. In comparison to CMIP5 RCP8.5 (33 models, 75 realizations) that 
displays increases in 60% of the simulations in the period of 2015–2050 (85% in 2051–2100), 85% of CMIP6 
SSP5-8.5 (42 models, 46 realizations) models show a positive trend already in the first half of the projections 
(91% in the second half; Fig. 6). There is also a smaller dispersion across SSP5-8.5 results. Under business-as-
usual emissions scenarios, the CMIP6 SSP3-7.0 simulations (23 models, 26 realizations) show behavior that is 
qualitatively comparable to SSP5-8.5, which indicates a significant rise in QRA events.

Conclusions
The real-world QRA-favorable events diagnosed from reanalysis data indicate a trend from an average of 7 
events/year in the late 1970s to around 9 per year in recent years, amounting to an increase by roughly 30% over 
the past 4 decades. Several studies have identified a number of persistent, high-impact extreme events in recent 
decades that are associated with QRA, reinforcing the proposition advanced by Mann et al.22 that the signal of 
an increase in QRA-induced persistent summer weather extremes due to human-caused climate change has 
recently emerged from the noise of natural variability.

According to our analysis, mid-to-high future emission scenarios indicate a future increase in QRA-driven 
extreme weather events, assuming that the historically defined fingerprint remains valid in future decades. There 
remain large uncertainties, as indicated by the large intermodel spread in QRA index. However, the qualitative 
agreement is larger in the newer CMIP6 model generation; except for a few outliers, there is common agreement 
that QRA events will increase, both in the first and also second half of the 21st Century. Excluding models 
with high Effective Climate Sensitivity (above 4.7 ℃) produced similar results, with small differences in the 
multimodel mean QRA trend.

An important source of uncertainty is the role of aerosol forcing, with the reduction of aerosol loads acting 
to reduce the number of QRA events. We therefore analyzed two distinct time intervals, namely the first and 
second half of the twenty-first century. We find that aerosol reductions play a substantial role in CMIP5 and 
CMIP6 models. Substantial projected anthropogenic aerosol reductions lead to a near zero or even negative 
QRA trend during the 1st half of the century in the CMIP 5 and 6 projections. For the latter half of the twenty-
first century, where greenhouse warming dominates, CMIP6 shows far greater trends in the QRA index among 
most models than CMIP5 projections. These findings align with warming patterns indicating greater polar 
amplification during both 21st-century sub-intervals, with the largest QRA-trending models showing the most 
significant polar amplification.

Our findings suggest that, compared to an earlier analysis based on CMIP5-generation climate model 
simulations, human-caused greenhouse warming will likely result in an even more substantial rise in QRA 
events and associated persistent summer weather extremes.

Materials and methods
QRA fingerprint
We used the QRA detection scheme developed by Kornhuber et al.20 and applied it to temperature profiles 
as in Mann et al.22,32 using the JJA 1979–2015 ERA-Interim reanalysis (atmosphere horizontal resolution of 
2.5° × 2.5°,  51), including in the present study the ERA5 reanalysis (atmosphere horizontal resolution of 
0.25° × 0.25°, 52) from 1979–2023.

For the detection scheme, the near-surface atmospheric temperature profiles were calculated (1000  hPa 
pressure level) over the North Hemisphere area (0°N to 90°N), with ERA-Interim and ERA5 in 2.5° spacing (37 
steps). The events treated here were obtained under the condition of waves with number 6–8, focused on long 
duration cases (10 ≤ duration ≤ 15 days) as the QRA-favorable time intervals and confined zonal mean profiles 
to the latitude range (25°N to 75°N) of interest. To match the QRA fingerprint obtained from the reanalysis with 
the grid of the climate models, all the zonal mean profiles were interpolated to a 5° latitude and centered on zero. 
This yields an 11-element zero-centered row vector that defines the QRA fingerprint, that represents the main 
aspects of the midlatitude temperatures, including the Arctic amplification given in high latitudes (65°N-75°N).

The use of 2.5° for the reanalysis and models was made upon the need to compute the first and second 
derivatives involved in our QRA investigation. Finer resolution produced unnecessary noise in out derivatives, 
and later on the RMSE analysis.
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Mann et al.32 performed a comparison of two independent periods for the QRA fingerprint, first half (1979–
1997) and second half (1998–2015), with the full ERA-Interim analyzed (1979–2015), that yields profiles very 
similar. Under this consideration, we kept the same QRA fingerprint from ERA-Interim (1979–2015) while 
calculating the model-based QRA fingerprint for the present analysis.

In CMIP6, CMIP5, and observational datasets, the projection of other fields onto the QRA fingerprint was 
estimated by computing the linear inner product of those fields and the QRA fingerprint mentioned above.

ERA5 was used to identify recent QRA events and to rescale models’ QRA fingerprints. We constructed a 
time series of observed annual QRA events using the collection of all QRA events from wavenumbers 6 to 8 in the 
reanalysis dataset from 1979 to 2023 (Fig. 1), once ERA-Interim (1979–2015) was discontinued (Supplementary 
Figure S1). Therefore, the approach of the mean and variance matching with this series to scale the observational 
and model-based QRA fingerprint series in dimensions of the equivalent annual number of QRA events was 
applied.

CMIP5 and CMIP6 simulations
Historical simulations
CMIP5 and CMIP6 Historical scenario experiment designed for the recent past (1850 to 2005/CMIP5 and 
2014/CMIP6), with imposed changing conditions (consistent with observations), including both anthropogenic 
and natural forcing. We used the CMIP5 multimodel ensemble simulations of 38 different models (N = 150 
realizations). And for CMIP6, 60 different models (N = 66 realizations). Each model’s characteristics are detailed 
in Supplementary Tables S1-S4. We used a simple area-weighted average to create zonal means at a 5° interval22.

Future projections (RCP8.5, SSP5-8.5, and SSP3-7.0)
The impact scenarios studied consist of: the most heavy emission pathway scenarios RCP8.5 from CMIP5; 
the CMIP6 equivalent heavy emission scenario SSP5-8.5; the SSP3-7.0 designed for aerosol impact studies, a 
medium–high forcing scenario with high emissions of near-term climate forcers (NTCF) such as methane and 
aerosol; and the SSP3-7.0-lowNTCF, following a low NFCT pathway of SSP3-7.0 design.

From CMIP5 RCP8.5 (2006–2100) we used 33 models (N = 75 realizations) for the analyses in the main 
article. For CMIP6 SSP5-8.5 the number of models is 42 (N = 46 realizations); for SSP3-7.0 23 models (N = 26 
realizations), and for SSP3-7.0-lowNTCF 5 models (N = 16 realizations); limited to the common time period of 
overlap for all models and realizations (2015–2100).

We used a simple area weighted average to create zonal means at a 5° interval, as performed for the Historical 
experiment.

Information of models characteristics cited above for CMIP5 and CMIP6 (Supplementary Tables S1-S4) were 
obtained from the models’ data file header, and complemented with information from IPCC (53 – Table AII.5, 
and 42 – Table 9.A.1).

Observational data
Using each of the three alternative datasets GISTEMP (1880–2015; 54), HadCRUT4 (1894–2015; 55), and Cowtan 
and Way (1894–2015;  56), we examined zonal mean boreal summer (JJA) average temperatures (surface air 
temperature over land and sea surface temperature over oceans). Due to the large spatial gaps in the Arctic 
region, which is crucial to this study, as well as the amplified high latitude warming in the Northern Hemisphere 
in recent decades, these three different datasets make alternative assumptions about how to account for historical 
data gaps. Continuous data availability for each latitude band limited the analysis’s time frame. Examples include 
the HadCRUT4 and Cowtan and Way datasets, which from 1894 to the present day contain at least one grid 
cell temperature value in each latitude band across the relevant range (25°N to 75°N). As a result, the grid cell 
coverage is relatively low in the early record segments and rises as we get closer to the present. We created zonal 
means at a 5° interval using a simple area-weighted average, as with the models’ output22,32.

Data availability
The data and programming codes required to reproduce this analysis are publicly available at: https://doi.
org/10.5281/zenodo.10364064.
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