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Abstract We investigate the characteristics of inter‐ and multidecadal temperature variability in the
Community Earth SystemModel Last Millennium Ensemble through spatiotemporal spectral analysis of forced
and internal fields. We find high spectral density in North Atlantic (NA) and global temperature that is
concurrent with periods of high volcanic activity, suggesting a forced origin. There is no evidence in the
ensemble of an internally‐generated and time‐persistent signal for Atlantic Multidecadal Variability (AMV), the
dominant mode on those timescales. The spatial patterns of low‐frequency variability indicate activity
throughout the North Pacific, where signals persist to a greater extent after the forced signal is removed, in
contrast with the NA where only the subpolar region associated with deep water formation is active. Subtropical
and tropical NA regions are strongly associated with forced responses, suggesting the canonical AMV pattern is
comprised of both internal and forced components, with the latter being the main driver.

Plain Language Summary Climate change results from a combination of externally forced changes
and internal, random variability. We used a series of simulations of Earth's temperature evolution during the pre‐
industrial last millennium (850–1850 CE) from a single model to investigate the Atlantic Multidecadal
Variability (AMV), a purported mode of potentially oscillatory climate variability detected in various climate
data sets and thought to be the most influential mode in multidecadal timescales. By determining the forced
component of variability using the mean of all simulations, we explore the extent to which AMV is internally
generated or externally forced and identify its spatial expression. Our results indicate that during periods of high
volcanic activity, a multidecadal oscillation can be detected. However, this signal is not present in the internal
fields, suggesting that the real‐world AMV is externally forced. Our methods allow for the spatial pattern
reconstruction of any detected signals globally, which leads us to find more evidence for internal variability in
the North Pacific than in the Atlantic. These findings support growing evidence that AMV is a combination of
externally forced and internally generated variability, in which the forced component is dominant, hindering the
prospect of its predictability.

1. Introduction
Characterizing multidecadal climate variability and its underlying physical mechanisms is one of the greatest
challenges for robust assessment of uncertainty in climate model simulations (Deser et al., 2012; Hawkins &
Sutton, 2009; Lehner et al., 2020). Central to this challenge has been the difficulty in identifying and predicting
low‐frequency internal variability in the North Atlantic (NA) region, which influences climatic conditions in the
surrounding North American and Eurasian continents (Semenov et al., 2010; Sutton & Hodson, 2005), Atlantic
hurricane activity (Goldenberg et al., 2001; Ting et al., 2019), the northeast Brazil and Sahel/Indian monsoons
(Knight et al., 2006; R. Zhang &Delworth, 2006), and has been linked to the so‐called warming hiatus of the early
21st Century (Li et al., 2020; Yang et al., 2020). Originally named the Atlantic Multidecadal Oscillation (AMO;
Kerr, 2000) due to a purported narrowband pattern of oscillatory behavior (Delworth & Mann, 2000; Folland
et al., 1986), the termAtlantic Multidecadal Variability (AMV) is now preferred to describe the dominant mode of
sea surface temperature (SST) variability over the NA. This allows for a wider range of temporal and spatial
expressions (R. Zhang, 2017), as well as implicitly including both internal oscillatory and non‐oscillatory
behavior and Atlantic surface temperature responses to external forcing (Frankignoul et al., 2017). As the
dominant mode of NA and global climate variability in multidecadal timescales (Chylek et al., 2014), the AMV
has also been observed to have an impact on the Pacific Decadal Oscillation (PDO) or Interdecadal Pacific
Oscillation (IPO), through extratropical (e.g., R. Zhang & Delworth, 2007; L. Zhang & Zhao, 2015) or tropical
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(e.g., Meehl et al., 2021; Ruprich‐Robert et al., 2017) atmospheric teleconnections. The spatial and temporal
expressions and climate impacts of AMV have been documented through studies of observations, proxy data and
model simulations (e.g., Enfield et al., 2001; Michel et al., 2022; Wang et al., 2017), yet the specific mechanisms
that underlie this pattern are still subject to debate (Bellucci et al., 2017; Delworth & Mann, 2000; Schlesinger &
Ramankutty, 1994).

Although there is consensus that AMV is a combination of internally generated variability—related to the
Atlantic Meridional Overturning Circulation (AMOC) and its responses to stochastic ocean‐atmosphere in-
teractions (Kim et al., 2020), or other modes of variability like the North Atlantic Oscillation (NAO; Delworth
et al., 2017)—and SST responses to anthropogenic and natural forcings (Deser & Phillips, 2021; Qin et al., 2020),
the extent to which internal versus external processes influence AMV is a matter of contention (Baek et al., 2022;
Bellomo et al., 2018; Booth et al., 2012). A forced origin for AMV has been proposed by a number of studies
wherein volcanic activity is identified as the driver of multidecadal SST variability (e.g., Birkel et al., 2018;
Klavans et al., 2022; Otterå et al., 2010). Contrastingly, other groups have concluded that AMV is primarily
internally driven through connections with AMOC and with a limited (or modulating) role for external forcing
factors (e.g., Kim et al., 2020; Qin et al., 2020; Robson et al., 2023). Further mechanisms identified as drivers of
internal AMV include stochastic atmospheric forcing (Clement et al., 2015), coupling and amplifying of the NAO
(Delworth et al., 2017; Sutton et al., 2018) and cloud‐radiation feedbacks (Bellomo et al., 2016; Cane et al., 2017).
In a series of efforts, Mann et al. analyzed control and forced CMIP5 simulations and suggested that AMV is
predominantly a response to external forcing in the Last Millennium (Mann et al., 2021) and to anthropogenic
aerosol forcing in the industrial era (Mann et al., 2020).

The characterization of AMV is complicated by the lack of consensus on its defining index—commonly
calculated over the entire NA basin—which leads to inconsistent results (Robson et al., 2023). Furthermore,
common methods for isolating internal AMV such as linear detrending of the low pass filtered and spatially
averaged NA SST timeseries (i.e., the canonical AMV index; Enfield et al., 2001), subtracting global mean SST
from the NA series (Trenberth & Shea, 2006), and other methods (e.g., Steinman et al., 2015; Ting et al., 2009)
have been found insufficient to varying degrees (Deser & Phillips, 2021), and more sophisticated methods have
been proposed (Deser & Phillips, 2023; Frankignoul et al., 2017; Wills et al., 2020). The range of methodologies
for characterizing the internal AMV, compounded with the variety of time periods in both industrial and pre‐
industrial data sets, have led to a range of periodicities from 20 to 40 years to as long as 60–80 years (Mann
et al., 2020; Zhou et al., 2020). Observational data sets are likely too short to accurately encompass multidecadal
variability (Mann et al., 2021) and are heavily influenced by anthropogenic GHG and aerosol forcing (Bellucci
et al., 2017; Booth et al., 2012), while the estimation of internal variability in model simulations is known to be
dependent on the choice of forcing series (Fyfe et al., 2021). When large ensembles of model simulations are
available, however, the use of the single‐model ensemble mean (Deser & Phillips, 2021; Mann et al., 2022), or of
several models (Knight, 2009; Kravtsov & Callicutt, 2017), has been shown to adequately represent the forced
signal (Frankcombe et al., 2018).

Here we characterize the spatiotemporal expressions of multidecadal variability in global surface temperature
fields and explore their relationship to the canonical AMV, the main mode of variability over those timescales, by
expanding on the methods and scope of Mann et al. (2020, 2021). We focus on the pre‐industrial last millennium
(850–1850 CE) to avoid two key issues: (a) the historical period is insufficiently long to capture more than a few
cycles of a multidecadal signal, which makes the significance of any results tenuous, as the secular band is close to
the upper range of AMV periodicity (Mann et al., 2020), and (b) the competing influences of anthropogenic GHG
and aerosol emissions with natural forcings makes the isolation of internal signals challenging (Thompson
et al., 2015). In contrast with Mann et al. (2020, 2021), we make use of a single model ensemble, thereby avoiding
structural uncertainties present in multiple model comparisons and accurately determining the forced temperature
signal (Frankcombe et al., 2018). Additionally, by employing Multi‐taper Method Singular Value Decomposition
(MTM‐SVD) on the data fields, we are able to detect and reconstruct any pattern in the ensemble without
calculating an AMV index and thus without any a‐priori assumptions regarding its spatial and temporal char-
acteristics. Furthermore, to explore the extent to which volcanic forcing impacts multidecadal SST variability, we
also conduct spectral analyses across specific time periods of high and low volcanic forcing, by use of a moving
windowMTM‐SVD approach, and compare resulting spectra in the NA to global fields under the assumption that
changes in radiative forcing manifest themselves on a global scale while AMV‐related variability would be
strongest in the NA region. Lastly, we explore the global spatial patterns associated with purported oscillatory
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behavior over a range of timescales to assess the consistency with which the patterns are expressed across the
ensemble and compare forced versus internal expressions in the NA and Pacific regions.

2. Data and Methods
2.1. Data: The CESM LME

The Community Earth System Model (CESM) Last Millennium Ensemble (LME; Otto‐Bliesner et al., 2016) is
the largest available set of single model simulations spanning the past millennium, thereby providing a unique
testbed for exploring climate variability across multiple timescales. We focus on the “All Forcing” ensemble
(henceforth “LME”; N = 13), forced by volcanic, solar, orbital, GHG, aerosol and land‐use changes (see Otto‐
Bliesner et al., 2016) and estimate the forced signal as the ensemble mean (“LME‐EM”) which is then sub-
tracted from each individual ensemble member to isolate the internal variability (“LME‐unforced”; Frankcombe
et al., 2018). The volcanic forcing series used in the LME (Gao et al., 2008) is also used in CMIP5/PMIP3 last
millennium protocols (Bothe et al., 2013), allowing for direct comparison between our results and previous
analyses of those data (Mann et al., 2021). The LME consists of fully coupled transient simulations using version
1.1 of CESMwith the CAM5 atmospheric model (Hurrell et al., 2008), land and atmosphere resolution of∼2° and
ocean and sea ice of ∼1°. We analyze surface air temperature fields which are strongly correlated with SSTs and
yield nearly identical results for ocean regions.

2.2. Method: Spectral Analysis of Climate Timeseries and Fields

We perform power‐spectral‐density analysis (PSD) via the Multi‐taper Method (MTM; Thomson, 1982) on
global and NA (defined as the region bound by 80°W–0°E) area‐weighted average temperature series to detect
broad spatial‐scale signals and for the sake of comparison with similar studies (Ba et al., 2014; Bellomo
et al., 2018; Miao et al., 2024). Additionally, we apply wavelet analysis (Torrence & Compo, 1998) to LME‐EM,
allowing for visualization of the spectral density in individual timeseries as it changes through time. Due to the
limitations in detecting periodic signals that may weakly project onto global or regional averages (like AMV), we
employ the MTM‐SVD method, which was designed for the detection of narrowband spatiotemporal signals in
climate data fields (Mann & Park, 1994, 1999). Unlike data decompositions in the time domain such as PCA/
EOF, MTM‐SVD performs PSD analysis on each timeseries, transforming the data into the frequency domain
before detecting patterns of variability through SVD. The process is done over a bandwidth ±pfr, where fr is the
minimum resolvable frequency (fr = 1/N ∆ t; N samples ∆t timestep) and p is a bandwidth parameter determined
by p = K − 1, with K being the number of tapers in MTM. The Local Fractional Variance (LFV) is the signal
detection variable whose magnitude indicates the relative level of spatiotemporal activity in a specific frequency
band. Under the assumption that a red noise spectral background varies modestly in the narrow bandwidth of the
analysis and thus locally approximates white noise, significance limits are calculated through bootstrapping
wherein LFV spectra are calculated for temporally randomized fields. Once a signal is identified, it may be
reconstructed from the complex SVD decomposition. Percent‐variance‐explained maps of the reconstructed
signal versus the original fields are calculated to construct the spatial patterns. See Supporting Information S1 for
a full description of the method.

3. Results and Discussion
We first apply PSD and wavelet analysis to investigate signals that may have a significant imprint on North
Atlantic mean surface temperatures and that are persistent throughout the length of the simulations. The times-
eries analyzed here are analogous to the canonical AMV index (area‐weighted mean surface temperatures;
Figure 1a Top). MTM analysis on each LME and LME‐unforced ensemble member characterizes the total
variability and internal‐only components of the ensemble, while LME‐EM corresponds to the forced‐only signal
(Figure 1b Right). Wavelet analysis of LME‐EM (Figure 1b, Left) represents the temporal evolution of spectral
power of the forced signal and is directly related to the MTM spectrum of LME‐EM. Two distinct periods of
enhanced forced activity, 1200–1300 CE and 1600–1850 CE, both due to high rates of volcanism, are evident in
the wavelet analysis. Note that these periods show heightened activity across a wide range of periodicities but are
temporally bounded by relative volcanic quiescence. MTM spectra of the LME ensemble and LME‐EM show
enhanced power in the ∼40‐ and ∼60‐year periodicities, which is absent in the unforced data. Indeed, diminished
spectral density through all frequencies is observed in the LME‐unforced series, suggesting that through the last
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millennium a large proportion of oscillatory or pseudo‐oscillatory behavior in mean NA SST (and thus AMV
index) is driven by external forcing. Figure S1 in Supporting Information S1 shows the same analysis applied to
global temperature series, wherein similar spectral features are present in the volcanically active periods of the last
millennium, further suggesting that volcanic forcing is the main driver of multidecadal variability.

Studies comparing output from CESM and other models, paleoclimate proxy data and reanalysis products have
reported enhanced spectral density in the ∼60–80‐year band for NA SSTs for the second half of the last mil-
lennium (post 1250 CE), but not before then (Dai et al., 2022; Mann et al., 2021; Miao et al., 2024). Our results
suggest that these observations are likely due to high volcanic activity during the 13th, 17th, and 18th Centuries
that manifests over a broad band of frequencies. Importantly, a comparison between the MTM spectra and the
wavelet reveals that spectral peaks in certain frequencies do not correspond to signals consistently expressed
through time, but are localized temporally near the high‐volcanism periods. This suggests that multidecadal
variability attributed to the AMV in PSD analyses may be the result of time‐varying forcing mechanisms whose

Figure 1. (a) Top: LME Ensemble Mean (LME‐EM) North Atlantic mean surface air temperature (NAMSAT) anomaly timeseries (black line) and spread of the LME
ensemble (IQR and 95% spread in dark and light red, respectively). All timeseries are 20‐year lowpass filtered only for visualization. Bottom: Gao et al. (2008) global
stratospheric volcanic aerosol injection standardized series (z‐scored; red) and 100‐year trailing average of the same data (dark gray) to highlight centennial‐scale
fluctuations. (b) Left: Continuous wavelet transform of the LME‐EM. Light gray outlines represent 90% confidence levels. Right: MTM spectrummean (solid) and IQR
(shading) for LME, LME‐unforced and LME‐EM.
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impacts in distinct periods may be sufficient to produce to a spectral peak for the full series. In analyzing the mean
spectrum of all simulations, as well as the spread of individual spectra, we find no common periodic behavior in
the CESM LMENAmean surface temperature series that points to a mode of internal variability expressed on the
timescales of interest. This indicates that CESM, in contrast to other models, does not produce significant internal,
multidecadal variability in the North Atlantic (Ba et al., 2014; Fang et al., 2021; Mavilia et al., 2018).

The internal portion of the AMV is thought to be a redistribution of heat over the NA, and it may not necessarily
project strongly onto mean temperature series (Mann et al., 2021) such as the AMV index or global series. To
explore the spectral power of the temperature fields as a whole, we perform MTM‐SVD analysis (Mann &
Park, 1994) to spatially and temporally characterize any prevalent signal. By analyzing both NA and global fields
we are able to discern if an AMV‐like pattern is due to global variability (e.g., cooling due to volcanism) or
localized phenomena (ocean circulation). Though the mean LFV spectra of the simulations (Figure 2, Right) show
no statistically significant narrow‐band signal through the last millennium, a moving‐window MTM‐SVD
analysis reveals that apparent oscillatory behavior in the temperature fields is detected in all realizations only
during times of strong forcing (Figure 2, Left). Signals above the 90% confidence level are absent in the NA
analysis except for short ranges of time within ∼100 years of the Samalas eruption of 1,257 CE, the largest
eruption in the Gao et al. (2008) volcanic forcing record, and the global analysis shows highly significant signals
close to the secular band (100 years) at the same time. A similar analysis of a much smaller (N = 5) ensemble of
experiments forced only by volcanism shows similar trends in all time periods and spectral bands (Figure S2 in
Supporting Information S1), further indicating that volcanism drives any apparent periodic behavior in CESM.
Once internal variability is isolated, no spatiotemporally coherent signal exists that is common to all experiments

Figure 2. Left and Middle: Moving‐window (200‐year) LFV spectra of North Atlantic and global temperature fields from the LME and LME‐unforced. Dashed, thin
solid and thick solid contours represent 50%, 90%, and 95% confidence levels, respectively. Thick horizontal ranges denote the periods of analysis for subsequent signal
reconstruction (Figure 3). Right: LFV spectra of NA and global temperature fields for LME (red) and LME‐unforced (blue). Mean and 2σ range of spectra represented
by thick lines and shading.

Geophysical Research Letters 10.1029/2024GL113393

FERNANDEZ ET AL. 5 of 12

 19448007, 2025, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

L
113393, W

iley O
nline L

ibrary on [02/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



and that can be distinguished from a colored noise null hypothesis (Figure 2 Middle). Time‐slice comparison of
LFV spectra in the LME and volcanic‐only simulations produces similar results, wherein discernible differences
between the forced and unforced fields are only present in periods of high volcanism (Figure S2 in Supporting
Information S1).

After assessing the level of spectral power across different time periods in the CESM LME, we further leverage
MTM‐SVD to characterize the spatial patterns associated with prominent signals. We analyze temperature fields
during the period of highest LFV spectral density related to heightened volcanic activity (∼1150–1400 CE) and
calculate mean %‐variance‐explained maps that show the dominant spatial patterns in the ensemble. As no spatial
regressions or correlations are necessary to characterize spatial patterns of variability in a particular frequency
slice, no assumptions about the relationship between forced and unforced signals with any indexes or features in
the data are needed (Mann et al., 2021), providing an unbiased view of the locations where significant temperature
variability occurs. Furthermore, because the MTM‐SVD method is capable of reconstructing a signal regardless
of its relative amplitude or spatial extent, we are able to produce global maps of variance explained that provide
context as to other manifestations of low‐frequency temperature variability outside of the NA, particularly in the
Pacific, and that do not dampen signals exclusive to the NA (Figure S4 in Supporting Information S1). We focus
on bidecadal (∼23 years), interdecadal (∼44 years), multidecadal (∼60 years) and centennial (∼95 years) peri-
odicities (Figure 3), chosen with the goal of capturing the highest LFV values in the evolutive spectra (Figure 2).
Though the multidecadal slice does not show heightened spectral density in the MTM‐SVD analysis, we show it
due to its prevalence in previous works (Dai et al., 2022; Lapointe et al., 2020; Mann et al., 2021; Miao
et al., 2024).

The signal reconstruction and resulting variance‐explained maps of the forced ensemble (Figure 3 Left) display
general similarities across the selected timescales such as heightened activity in the Gulf of Mexico, tropical and
subtropical NA and subtropical Pacific. Previous studies characterizing spatial patterns of variability due to
volcanism show similar spatial distributions on decadal and multidecadal timescales (Bellomo et al., 2018; Deser
& Phillips, 2021; Fang et al., 2021; Watanabe & Tatebe, 2019). As the global impacts of volcanic cooling in
CESM have been shown to strongly influence tropical oceans (Otto‐Bliesner et al., 2016), observed activity in the
tropical and southern Atlantic and Indian Oceans are expected in the forced fields. The NA activity seems to
disappear, or attenuate significantly, in the internal fields (Figure 3, Right), suggesting that it is not predominantly
the result of the model's reproduction of internal variability in the form of oceanic circulation or interactions with
atmospheric phenomena. An exception is the subpolar NA region where the internal signal is relatively strong,
likely because of internal variability related to AMOC and other ocean‐atmosphere circulation patterns like the
NAO (Frankignoul et al., 2017; McCarthy et al., 2015).

Although volcanic eruptions typically have a short‐term direct effect on polar NA SSTs through sea ice
expansion, when clustered they can have longer lasting impacts due to the ice‐albedo feedback, which ultimately
results in freshwater injection that lowers salinity and slows AMOC convection (Dai et al., 2022; Slawinska &
Robock, 2018). In effect, it is suggested that a series of large eruptions in the late 13th Century, starting with the
Samalas event, triggered the centuries‐long cooling that led to the Little Ice Age (LIA; Miller et al., 2012). Our
MTM‐SVD analysis captures decadal and multidecadal processes in this subpolar region that are a combination of
internal variability and long‐term responses to volcanic forcing, though there appears to be no significant narrow‐
band periodicity to the signal. Thus, our results suggest that the long‐lasting impacts of heightened volcanism
during the 13th and 14th centuries leads to an amplification of NA SST variance by modulating AMOC activity
through sea‐ice expansion, reduced heat loss and freshwater injection, which would impact convection (Delworth
& Mann, 2000). Periods in the last millennium with higher volcanic activity, as well as single large volcanic
events, appear to have a greater AMOC variability on both annual and interdecadal timescales (Figure S5 in
Supporting Information S1). Otto‐Bliesner et al. (2016) similarly document how some eruptions have an im-
mediate cooling influence on AMV followed by a decadal‐scale warming, highlighting how volcanic effects
influence surface temperatures and ocean circulation on different timescales.

The patterns of variability in the Pacific Ocean are more persistent between the LME and LME‐unforced fields in
contrast with the NA, with the strongest signal resembling the extratropical boundaries between the PDO dipoles
(Hua et al., 2018; Takahashi & Watanabe, 2016; Xu et al., 2024). This could suggest that ocean circulation has a
stronger influence on surface temperatures in the Pacific and therefore a weak or non‐existent causal relationship
between the AMV and IPO/PDO. This supports the results of Frankignoul et al. (2017), who suggest a larger
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proportion of Pacific variability to be internal compared to the AMV, and whose estimate of the PDO pattern is
similar to our interdecadal and multidecadal results. The lack of signal concentrated in the tropical Pacific
suggests that the impact of ENSO variability on lower frequency Pacific patterns is reflected at higher latitudes in
the chosen timescales. Furthermore, the concentration of explained variance in the subtropics has a spatial pattern
resembling that of the Pacific Meridional Mode (PMM; Amaya, 2019; Sanchez et al., 2019). Two regions of the
Pacific show enhanced activity in the unforced fields: the western subtropical Pacific (off the coast of Japan), and
the southern subtropical eastern Pacific (west Peru and northern Chile), regions usually associated with the PDO
(Newman et al., 2016). The enhanced signal in the internal fields suggests CESM generates internal variability in
the Pacific to a greater extent than in the NA.

Figure 3. Mean spatial patterns of %‐Variance Explained by reconstructed signals at each of the periocities identified in Figure 2 for LME (left) and LME‐unforced
(right) temperature fields across all 13 ensemble members during 1150–1400 CE.
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4. Conclusions
We employed the MTM‐SVD method of spatiotemporal signal detection and reconstruction, coupled with single
timeseries PSD and wavelet analysis, to assess evidence in the CESM LME for periodic or oscillatory signals in
North Atlantic and global surface temperature fields, with a focus on the AMV. Our results build on those of
Mann et al. (2020, 2021) by performing single‐series spectral analysis on the AMV index used in other studies
(Bellomo et al., 2018; Dai et al., 2022; Miao et al., 2024), performing signal reconstructions on both forced and
unforced fields, implementing a moving window spectrum allowing for signal detection in distinct time intervals,
and performing global signal reconstructions over a range of timescales and thereby comparing internal versus
forced signals in both the NA and the Pacific. We found spectral peaks in the LME ensemble temperature fields
that are absent in LME‐unforced and that are exclusively present both in NA and global temperature series during
time periods of high volcanic activity (Figure 1, Figure S1 in Supporting Information S1), agreeing with previous
studies that suggest a strong role of forcing on AMV (e.g., Birkel et al., 2018; Clement et al., 2015; Otterå
et al., 2010). Our results indicate that apparent oscillatory behavior in the NA is due to external forcing, spe-
cifically volcanic activity during the 13th and, to a lesser extent, the 17th and 18th centuries, as similar spectral
behavior is evident in analyses of global fields (Figure 2), which indicates a common underlying mechanism to
both. Previous studies comparing the spectral density in AMV indices prior to theMedieval Climate Anomaly and
into the Little Ice Age report similar results, suggesting a shift from weak interdecadal to strong mulitidecadal
periodicities of the AMV concurrent with the strengthening of volcanic forcing that led to the onset of the LIA
(Dai et al., 2022; Miao et al., 2024). By identifying periods of high spectral density in multidecadal bands that are
not persistent through time, and that are common to global and NA fields, as well as to both the LME and
Volcanic‐only experiments (Figure 2, Figures S2 and S3 in Supporting Information S1), we conclude that no
internal mode of variability with any characteristic or predictable frequency can be detected in the climate as
simulated by the CESM model.

After determining the spectral characteristics of the ensemble, we leveraged MTM‐SVD signal reconstruction on
global fields in order to disentangle the spatial patterns associated with any periodic behavior. Our results
(Figure 3) agree with previous studies that have attributed a larger proportion of AMV variability to NA responses
to external forcing than to internal climate dynamics (Frankignoul et al., 2017; Murphy et al., 2017; Watanabe &
Tatebe, 2019) and show a spatial expression of variance explained that has commonalities with previous studies
characterizing the AMV and/or Pacific SST variability (Knight et al., 2005; O’Reilly et al., 2019; Takahashi &
Watanabe, 2016). The subpolar Atlantic region in particular shows evidence of internally generated temperature
variability, while the rest of the canonical “horseshoe” shape often attributed to the AMV appears to be related to
the Atlantic's response to radiative forcing, particularly in the tropical NA (Frankignoul et al., 2017). There is,
however, no evidence that internal variability in the subpolar NA is oscillatory. Thus, we suggest that multi-
decadal variability on timescales commonly attributed to the AMV is due to different mechanisms: an internally
generated source of temperature variability (overprinted by external forcing) that occurs in the subpolar region of
NA deep water formation but is not consistently periodic through the last millennium, and an exclusively forced
region of temperature variability related to the response of the NA to volcanic activity, localized in the subtropical
(∼20–30°N) NA and Gulf of Mexico and that extends to the eastern branch of the canonical AMV pattern.

We further find that the spatial expressions of decadal and multidecadal patterns in the Pacific (IPO/PDO) are
both stronger and more consistently expressed in the forced and unforced fields compared to those in the Atlantic,
suggesting ocean and atmosphere dynamics exert a greater control on Pacific low‐frequency variability in the
LME. However, these observations may also be due to the long‐term impact that volcanism has on the extent and
characteristics of ENSO activity (McGregor et al., 2020; Pausata et al., 2023), which itself is strongly correlated
with lower‐frequency IPO variability in both observations (Heidemann et al., 2024) and model simulations
(Capotondi et al., 2020).

The apparently strong dependence of inter‐ and multidecadal variability in NA SSTs to external forcing in CESM
suggests that there is limited predictability for an AMV‐like mode that could be used to reduce uncertainty in
climate projections, though some skill has been found in initialized model experiments related to subpolar NA
heat content and gyre circulation (Yeager, 2020). It has been shown, however, that CESM does not fully capture
low frequency internal variability related to the AMV and NAO (O’Reilly et al., 2019) and that it is highly
sensitive to volcanic radiative forcing (Otto‐Bliesner et al., 2016). Thus, additional large simulation ensembles
from different models, and from which internal variability could be isolated, would help elucidate the extent to
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which the internal component of the AMV has changed through time and the degree to which multidecadal
variability in the NA is a direct consequence of internal ocean‐atmosphere dynamics versus external forcing.
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