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Abstract Annual North Atlantic tropical cyclone (TC) counts are frequently modeled as a Poisson process
with a state‐dependent rate. Current models based on Poisson regression can explain roughly 50% of the annual
variance using three climate indices: El Niño/Southern Oscillation, average sea surface temperature (SST) in the
main development region of the North Atlantic, and the North Atlantic oscillation atmospheric circulation
index. We introduce a new method, based on the Elastic Net (EN) that predicts TC counts directly from global
SST maps. We show it achieves performance on par with current models, without requiring manually
constructed indices. To understand the performance of the EN we argue that, when TC counts are generated by
independent Poisson draws, statistical models are subject to a lower limit on prediction error. We estimate this
limit and show that it is saturated by both current models and our new method.

Plain Language Summary Our work studies the relationship between the total number of North
Atlantic tropical cyclones (TCs) each year and climate factors, such as sea surface temperature (SST). Many
researchers have worked on this problem and have typically needed to invent climate indices by hand to use in
explaining TC counts. We introduce a method that predicts TC counts directly from global SST maps, and show
it performs as well as previous methods. The new method is in principle sensitive to much more information
about global climate and does not require hand‐crafted climate indices. We also argue that we may have reached
a limit of predictive power and speculate that current models already extract all available information from
climate factors to explain TC counts.

1. Introduction
Potential climate influences on the variation over time of North Atlantic Tropical Cyclone (TC) counts has been
a topic of active research for some time. Numerous prior studies have examined the importance of various
climate factors in influencing year‐to‐year variation in the seasonal number of named storms (annual TC
counts). A small number of climate variables have emerged as being particularly important in modeling annual
TC counts. It is well known that the El Niño/Southern Oscillation (ENSO) influences seasonal TC activity
through its impact on vertical wind shear (Gray, 1984), with TC counts being enhanced during La Niña and
suppressed during El Niño. Warmer ocean surface temperatures promote the formation and development of
TCs (Emanuel, 1995; Gray, 1968) and numerous studies have thus incorporated the impact of sea surface
temperatures (SST) over the Main Development Region (MDR, 6°–18°N, 20°–60°W) during the peak months
of the hurricane season (August–October) (Emanuel, 2005; Hoyos et al., 2006; Mann et al., 2007; Sabbatelli &
Mann, 2007). The North Atlantic Oscillation (NAO) is also relevant to modeling Atlantic TC activity
(Elsner, 2003; Elsner & Jagger, 2006; Elsner, Jagger, & Niu, 2000; Elsner, Liu, & Kocher, 2000; Mann
et al., 2007) through its impact on the tracking of storms, which determines in part whether they encounter
conditions favorable for tropical cyclogenesis (Elsner, 2003; Elsner, Liu, & Kocher, 2000; Kossin et al., 2010).
For recent reviews of the models and methods used for TC forecasting see (Klotzbach et al., 2019; Takaya
et al., 2023) and references therein.

Previous research has demonstrated that basin‐wide TC counts can be effectively modeled as a Poisson process
conditioned on key climate state variables (Kozar et al., 2012; Sabbatelli & Mann, 2007). In particular, Kozar
et al. (2012) considered a broad menu of features and used forward stepwise Poisson regression to show that the
most skillful models for annual TC counts include ENSO, MDR SST, and NAO indices as predictors.
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This prior work raises the question of whether there are additional features which can help explain interannual
variability of TC counts. The predictors identified in prior work have expressions in the global temperature field.
In this work we introduce a novel method, based on the Elastic Net (EN), which predicts TC counts directly from
map‐level SST data and does not require hand‐crafted features. In principle this can capture all sources of pre-
dictive skill with expressions in global SST maps. We also explore nonlinear combinations of predictors iden-
tified in prior studies. We show the EN performs as well as existing methods and that nonlinear extensions do not
significantly improve performance. We explain these results by arguing that, if TC counts are truly generated by a
Poisson process, there is a natural limit to prediction performance. We estimate this limit and show it is saturated
by existing methods as well as our new one.

In Section 2 we introduce our data sources and statistical methods. Section 3 describes the results of the EN and
nonlinear extension studies. In Section 4 we estimate the limit on predictive skill that is saturated by these models,
and we present our conclusions in Section 5.

2. Data and Methods
2.1. Data

In this paper we use climate indices, global SST data, and annual TC count series. The climate indices used are
well described in previous references (e.g., Kozar et al., 2012). The key indices are the in season August‐October
(ASO) mean temperature in the MDR, the December‐February (DJF) Nino 3.4 index and the late‐to‐post‐season
boreal winter December‐March (DJFM) NAO index. For the global SST data we use the NOAA Extended
Reconstructed SST v5 (ERSSTv5) (Huang et al., 2024). This data set provides coverage over nearly the entire
ocean surface with mean monthly SST temperatures in a 2° × 2° latitude and longitude grid. For TC counts, we
use the adjusted TC counts published in (Vecchi & Knutson, 2008). This timeseries corrects for the improvement
over time in the detection of TCs from technological advances such as aircraft reconnaissance and satellites.

2.2. Poisson Regression

Poisson regression has been used in many prior studies of Atlantic TC counts (Elsner, 2003; Elsner, Jagger, &
Niu, 2000; Kozar et al., 2012; Mann et al., 2007; Sabbatelli & Mann, 2007). This approach assumes that the
probability of observing a number of TCs yt in year t is governed by the Poisson distribution

P(yt) =
λytt
yt!

e− λt (1)

where λt parameterizes the mean counts expected in year t. Poisson regression captures variation of observed
counts by assuming λt varies according to

λt = exp (β0 + β1x1t + β2x2t +⋯ + βpxpt) (2)

where xit is the value of “feature” or “predictor” i in year t, p is the total number of features, and the βi are co-
efficients which control the influence of feature i on the expected counts. The coefficient β0, which we sometimes
refer to as the “intercept,” controls the mean or unconditional count. Given a data set D with n observations we
define the log‐likelihood function

LPoisson({β}|D) = log P(D|{β}) =∑
n

t=1
(ytβ0 + yt ∑

p

j=1
βjxjt − eβ0+∑

p

k=1
βkxkt) (3)

where {β} = β0,…βp and terms independent of βi have been dropped. We then “fit” the model by choosing the
set of β̂i which maximize LPoisson. In this study we quantify prediction quality using mean absolute error (MAE)
defined by

E =
1
n
∑
n

t=1
|yt − ŷt| (4)
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where ŷt is the model's prediction for the target in observation t. MAE is simply the expected offset between the
prediction and the observed counts. It is less sensitive to rare observations with large residuals yt − ŷt than other
error measures (such as mean square error) which promotes statistical efficiency on our relatively small data set.

2.3. Cross Validation

To compare models or feature sets, we use the standard statistical meta‐algorithm of N‐fold cross‐validation
(NFCV). NFCV ensures prediction quality is always evaluated on data that was held out of training, providing
protection against overfitting and a realistic test of the skill of the model on real problems.

We first divide the dataD intoN partitions or “folds.” For each f = 1,2,…N we set aside fold f as validation data
and use the remaining folds to train the model. We use the trained model to generate predictions and compute the
error metric Ef on fold f . This generates a sequence of prediction errors {Ef } on validation data not seen in
training.

To compare two models A and B we use the differences in prediction error

ΔBA, f = E(B)f − E(A)f (5)

to compute the mean change in prediction error ΔBA and the t‐statistic

tBA =

̅̅̅̅
N

√
mean f (ΔBA, f )

std f (ΔBA, f )
. (6)

The mean change in prediction error ΔBA indicates whether B is an improvement over A, and the t‐statistic
measures the statistical significance of any improvements. If B reduces errors then ΔBA and tBA will be negative,
hence negative t‐statistics are preferred.

For this study, we divide the 140 yearly observations 1880–2019 into N = 5 equally sized folds 1880–1907,
1908–1935, etc. This maximizes the chances that adjacent years (which may not be statistically independent) are
assigned to the same fold.

2.4. Elastic Nets

Previous analyses (Kozar et al., 2012) have generally incorporated SST data using features inspired by an un-
derstanding of the processes involved in hurricane formation and climate. Here we investigate whether there is
additional information in global SST data that is not expressed in the existing hand‐crafted features. While we are
only using SST data, other drivers of Atlantic TC counts (such as wind or current patterns) may be incorporated
indirectly into the model through their correlation with the SST field. For example, the Nino3.4 index is based on
the tropical Pacific SST field, but it is actually a metric of how the ENSO phenomenon impacts wind patterns in
the tropical Atlantic that govern TC formation.

We incorporate the full SST data using an algorithm that takes global SSTmap‐level data and uses it to predict the
annual TC count directly. The technique is designed to ignore temperature observations that are not useful for
predicting TCs. Each month, the ERSSTv5 data set provides temperature data on roughly 8.8 × 103 grid points
covering the globe, while we have only n = 142 observations of annual TC counts, so we are deeply in the p ≫ n
statistical regime.

A given temperature observation τxymt in ERSSTv5 is specified by four indices (x,y,m, t) giving the latitude and
longitude indices (x,y) of the grid location, the observation month m (January–December) and the observation
year t. We process the features into normalized versions by computing the mean and standard deviations over t on
the training data,

μxym = meant (τxymt), σxym = stdt (τxymt). (7)
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For clarity we replace the triplet of indices (x,y,m) with a single consolidated pixel index i. In our terminology a
pixel refers to a specific geographical location together with an observation month. Using the pixel index i we
define normalized features zit by

zit =
τit − μi

σi
. (8)

On the training data zit has zero mean and unit standard deviation by construction. When performing cross‐
validation (See Section 2.3) it is crucial that we do not leak any information about validation data into
training. On validation data, we use the same Formula 8 but apply the μi and σi computed from training data.

We adapt the EN (Zou & Hastie, 2005) to the Poisson regression framework. To construct the objective function
LEN for training we use the SST features zit in the Poisson regression log‐likelihood 3 but add additional regu-
larization terms inspired by the EN

LEN (β0,β1,…βX ,λ1,λ2) = LPoisson (β0,β1,…βX) − λ1∑
X

i=1
|βi| −

1
2
λ2∑

X

i=1
β2i (9)

where X is the total number of pixels and λ1 ≥ 0 and λ2 ≥ 0 are regularization parameters. λ1 encourages sparsity
and performs variable selection by encouraging weak features to acquire zero coefficients. The λ2 term en-
courages the model to assign similar weights to highly correlated features. Note we do not apply penalties to the
intercept term β0.

The EN is trained using a two‐step process. In the first step we use a gradient ascent algorithm to find good values
of the coefficients. Denoting by βs

i the value of coefficient βi in step s of this process, we initialize β0i = 0 for i> 0
and β00 = logmeant yt. In each training step we adjust the values of the βs

i by

βs+1
i = βs

i + α
∂LEN
∂βi

(10)

where α is the learning rate. We have found α = 10− 6 works well in practice. Once gradient ascent ceases to

improve the objective function LEN on training data we halt the algorithm and assign preliminary values βí = βsʹ
i

where sʹ is the step with the maximum value of the objective function.

In the second training step, we adjust values of the coefficients. The EN penalties encourage coefficients to shrink
toward zero and hence predictions of TC counts will be biased. To reduce bias, we construct an aggregated feature
wt using coefficients from the first stage fits

wt =∑
X

i=1
βí zit (11)

then do a second Poisson regression on the training data using the two features {β0,wt}. This second Poisson
regression yields coefficients γ0 on the constant term and γ1 on the aggregate feature. This yields fitted co-
efficients β̂0 = γ0β 0́ and β̂i = γ1βí for i> 0. We then use 2 with features zit to generate predictions. While we use
the standard Poisson formula for prediction, the EN procedure generally produces different coefficient values
than the standard Poisson regression procedure.

3. Results
We use the model of (Kozar et al., 2012) as our baseline model. To ensure a fair comparison of models, we only
allow the EN model to train over data with the same month ranges that are available to the baseline model. We
train the EN using SST data from current year August through next year March.
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3.1. Elastic Net

We find that the EN can match the performance of the baseline model. The
EN with (λ1,λ2) = (0.316,104) achieves cross‐validated prediction error of
2.49 ± 0.14 versus 2.46 ± 0.10 for the baseline model. The performance
difference is not statistically significant (t = 0.41). See Table 1 for details.
Generally there is a broad region in the (λ1,λ2) plane that gives good EN
performance: the values reported here were chosen through a coarse grid
search.

In addition to providing a prediction, the EN also generates a map showing what oceanic regions and months
contain SST information relevant to TCs. Each feature i in the EN corresponds to SST at a specific grid location
during a specific month of the year. Hence, the coefficients βi give a measure of the weight that the EN puts on that
location and month in generating its predictions. The βi for the EN described above are shown in Figure 1. Most of
the pixels are close to zero, reflecting the influence of the λ1 penalty in eliminating some features. The maps
clearly show the weight placed on the area near the MDR during the TC season, with the weight falling off post‐
season. This reflects the importance of the MDR SST in driving TC formation. We also see features in the Pacific,
notably an area near the Niño 3.4 region which acquires a prominent negative weight post season. This is
consistent with the baseline model, in which higher temperatures in the Niño 3.4 region correspond to a decrease
in the TC prediction.

It is also possible to train an EN using only SST data available pre‐season. This model can then be used for
generating true forecasts of seasonal TC counts before the season commences, which is of practical interest. We
have trained a model using SST data over prior year December through current year April, resulting in βi as shown
in Figure 2. This map shows a strong positive weight put on the MDR area, increasing as the season approaches,
which is consistent with the notion that MDR temperatures are important for TC formation. This EN yields an
error of 2.78 ± 0.12. Unfortunately we do not have history for a baseline forecasting model available and so we
cannot report a relative EN performance comparison.

3.2. Nonlinear Interactions

The Poisson regression framework allows us to explore nonlinear interactions between the predictors in the
baseline model. We do this by constructing “product features” and testing whether they improve prediction errors
when added to the baseline model.

Given two features x and y, we define the product feature x ⋆ y by demeaning x and y on the training data, then
multiplying the resulting values together observation by observation. On validation data, we use the same means
derived from the training data, so this procedure is consistent with the cross‐validation procedure. We then test a
series of models, one per product feature, obtained by adding the product feature to the features in the baseline
model.

Table 2 summarizes the result of this test for the baseline model. Of the candidate predictors tested, only the
product nino34_djf * nao_djfm showed a reduction in prediction error when added to the baseline model:
prediction error decreases by a small amount (0.03) but the statistical significance of the effect is fairly strong
(t = − 4.71) and other checks show it is quite consistent across cross‐validation folds.

In addition to the features found in the baseline model, we have also examined all product features using the full
10 predictor set studied in Kozar et al. (2012). This study revealed no interesting product features, except those
trivially related to the nino34_djf * nao_djfm one described above. We have also explored some other
forms of nonlinear interaction that did not reveal additional features of interest.

4. Limits on Explanatory Skill
In this section we argue that, if the annual TC counts are truly generated by independent Poisson draws with
different rates each year, then any statistical model that predicts TC counts faces a lower limit on the MAE
achievable on validation data. We estimate this limit on our data and show that it is saturated by both the baseline
model (Kozar et al., 2012) and the EN.

Table 1
Cross‐Validated Performance Metrics for Baseline and Elastic Net Models

Model

Absolute Relative

Error Std Error Std t‐stat

Baseline 2.46 0.10

EN (0.316, 104) 2.49 0.14 0.05 0.12 0.41
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The data passes two checks of the independent Poisson hypothesis. First, following (Sabbatelli &Mann, 2007) we
compute the test statistic

x =∑
n

t=1

( yt − ŷt)
2

ŷt
(12)

Figure 1. Coefficients β̂i for the Elastic Net (EN) fit with (λ1,λ2) = (0.316,104) illustrating the weight the EN puts on each sea surface temperature observation.
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where yt are the observed counts and ŷt are the counts predicted by the model
in year t. We use the model of Kozar et al. (2012) and Sabbatelli and
Mann (2007) fit over our entire sample (no cross validation) to define ŷt,
yielding results fully consistent with Poisson distributed residuals (p = 0.84).
Second, we find the serial autocorrelation of residuals to this model is 11%,
mildly positive but consistent with zero (z = 1.3). There may be deviations
from independent Poisson draws not captured by these tests, but these results
support the independent Poisson assumption.

Focusing on a single year, the expected error for a prediction of z counts is

err(z,λ) = ∑
y ≥ 0

|y − z|P( y|λ) (13)

where P( y|λ) is the probability of observing y counts with Poisson rate λ
according to 1. For fixed z this error has a lower bound

Figure 2. Coefficients β̂i for an Elastic Net (EN) fit with (λ1,λ2) = (1,104) trained to generate pre‐season forecasts, illustrating the weight the EN puts on each sea
surface temperature observation.

Table 2
Cross Validated Performance Metrics With Candidate Nonlinear Terms
Added

Model

Absolute Relative

Error Std Error Std t‐stat

baseline 2.46 0.10

mdr_aso * mdr_aso 2.63 0.19 0.16 0.126 1.30

mdr_aso * nino34_djf 2.50 0.09 0.04 0.009 4.36

mdr_aso * nao_djfm 2.47 0.10 0.00 0.009 0.37

nino34_djf * nino34_djf 2.47 0.11 0.01 0.013 0.84

nino34_djf * nao_djfm 2.43 0.11 − 0.03 0.007 − 4.71

nao_djfm * nao_djfm 2.47 0.10 0.00 0.007 0.74

Geophysical Research Letters 10.1029/2025GL115213
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b(z) = min
λ
err(z,λ). (14)

In our application we are given observed counts yt in each year t, but the Poisson rates λt are unobservable. We can
estimate the lower limit for MAE by noting that a very good model will make predictions zt with a similar
distribution as the actual counts yt, so we estimate the lower bound B to MAE by averaging over observations

B =
1
n
∑
n

t=1
b( yt). (15)

The Formulas 13–15 apply to validation data only. Models can overfit to training data, potentially achieving zero
prediction errors. On validation data, not used in training, these models are still subject to Poisson uncertainty and
we estimate likely errors using the expectation 13. In any particular realization of the data, we may exceed B by
chance. On average or for a large number of observations, we expect it to be accurate.

When we compute B for our training data we obtain B = 2.51. This is consistent with the baseline model per-
formance of 2.46 ± 0.10 given in Table 1. The bound is also consistent with the EN model MAE of 2.49 ± 0.14.
While the baseline model appears to be slightly lucky at the 0.5σ level, both of these models saturate the error
bound.

Note the estimated lower limit 15 is independent of the model used to generate the predictions of TC rates λt in
each year. Our argument makes no reference to how the rate predictions are generated. So long as the TC counts
are truly generated by independent Poisson draws each year, the bound should apply.

5. Conclusions
Prior work modeling annual TC counts as a Poisson process with a state‐dependent rate has revealed that
roughly 50% of the annual variance can be predicted using three climate indices: ENSO, average SST in the
MDR of the North Atlantic and NAO atmospheric circulation index (Kozar et al., 2012). The results pre-
sented here shows that nonlinear extensions of these features does not improve performance of this baseline
model.

In this work we demonstrate a method, based on the EN, to predict TC counts directly from global SST tem-
perature maps. This method includes a large potential universe of features and matches the performance of prior
models without the need to create features by hand. As a byproduct, the EN generates maps which illustrate the
ocean regions most useful for predicting TCs. These maps may be useful in designing new climate indices and
understanding linkages between TC and global climate observables.

To understand the performance of the EN we present arguments that, if the TC counts are generated by in-
dependent Poisson draws, statistical models that predict TC counts are subject to a lower limit on prediction
error. We estimate this limit and show that it is saturated by both the baseline model (Kozar et al., 2012) and
the EN.

These results suggest some avenues for future research on improving statistical models of TC counts. So long
as the TC counts are well described by independent Poisson draws, and given observed model performance, our
limit suggests that further refinements to statistical models will not reduce prediction error on validation data.
We have reported some simple tests of the independent Poisson assumption in this work, but in the future, a
careful study of the TC count series could potentially identify violations. There could be a subtle relationship
between counts in different years which is not captured by our tests, perhaps modulated by a conditioning
variable we have not yet identified. This would violate the independence assumption and weaken or invalidate
the limit, and awareness of the violation could point the way to improved models. We hope future work will
illuminate this issue further.

Finally, we note that our study shares some limitations with all attempts at modeling TC counts, namely that the
available historical record represents a small number of observations and that possible effects of climate change
may lead to changes in the causal relationships that are difficult to discern from recent data.
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Data Availability Statement
The adjusted TC counts published in Vecchi and Knutson (2008) and climate indices were originally obtained
from the Penn State/IBM Nittany AI Alliance. This data, together with analysis and figure generating code, is
publicly available at https://doi.org/10.5281/zenodo.14767663 (Wesley, 2025). The NOAA Extended Recon-
structed SST V5 data (ERSSTv5) (Huang et al., 2024) is provided by the NOAA PSL, Boulder, Colorado, USA
with access information at https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html. The figures for this
manuscript were generated using the Anaconda software distribution version 24.7.1 available from https://www.
anaconda.com.
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