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Marine phytoplankton are crucial to oceanic ecosystems, yet trends in their activity, monitored through chloro-
phyll a, remain uncertain due to observational limitations. We generated an ocean chlorophyll a dataset (2001 to
2023) across low to mid-latitudes (45°N to 45°S) using multisource data and a deep learning approach. Our analy-
sis suggests widespread decline in ocean greenness, with chlorophyll a concentrations decreasing at a rate of
(=0.35 + 0.10) x 103 milligrams per cubic meter per year (mg m~ year™"). The decline is steeper in coastal re-
gions [(—0.73 + 0.22) x 10~> mg m~3 year™"]. The frequency of high chlorophyll a concentration events in coastal
waters has decreased at a relative rate of —1.78% per year. These trends are predominantly driven by rising sea
surface temperatures, which enhance ocean stratification, suppress nutrient upwelling, and limit phytoplankton
growth. These findings suggest a long-term decline in marine primary production and a reduced occurrence of

phytoplankton blooms, potentially disrupting trophic interactions and oceanic carbon cycling.

INTRODUCTION

Marine phytoplankton, responsible for nearly half of the biosphere’s
net primary productivity (1), play a crucial role in the marine car-
bon cycle and Earth’s climate system (2, 3). Regions with high
phytoplankton activity are hotspots for primary production (PP),
supporting marine fisheries and broader ecosystems (4-6). However,
excessive proliferation of harmful algae can cause severe environ-
mental issues (7). These dynamics underscore the need for long-term,
consistent, and global-scale monitoring of marine phytoplank-
ton biomass.

Chlorophyll a (Chl-a), the primary pigment involved in phyto-
plankton photosynthesis (8-10), is widely used as a proxy for phyto-
plankton biomass (2, 11-13). However, the magnitude and direction
of global phytoplankton biomass trends remain contentious due to
inconsistencies in observational data and methods (7, 12, 14-20).
Ship-based measurements suggest a century-long decline in phyto-
plankton biomass, corroborated by early satellite observations
(2, 14). Studies indicate that an intensification of ocean stratifica-
tion, driven by rising sea surface temperature (SST) due to anthro-
pogenic global warming, can lead to depleted nutrient stores in the
near-surface layer (Fig. 1A), leading to reduced phytoplankton bio-
mass, particularly in mid- and low-latitude regions (19, 21-23). In
contrast, some research links rising SST to enhanced algal blooms in
coastal areas (7, 24, 25), suggesting a greening of the oceans at low
latitudes (12, 18). While progress has been made in understanding
these patterns, the lack of standardized methodologies and inconsis-
tencies in the available data hinder definitive conclusions (15, 26, 27).

While satellite datasets provide long-term, large-scale observa-
tions (12), relying on them alone presents notable challenges (28, 29).
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For instance, up to 70% of global ocean color data from the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) onboard NASAs
Aqua satellite are missing due to, among others, cloud cover, sun glint,
or high viewing angles (30-32). In addition, ocean color retrieval algo-
rithms are often inaccurate in turbid coastal regions (28, 29). Data
reconstruction methods developed to address these gaps (33-37)
are typically constrained by the spatiotemporal resolution of the
original datasets and may overlook environmental drivers of Chl-a
dynamics. In situ measurements, while oftentimes extensive, suffer
from inconsistent sampling standards and uneven spatiotemporal
distributions (15, 26, 27). These limitations hinder accurate assessment
of spatiotemporal patterns in ocean Chl-a concentrations, particu-
larly in coastal regions where ecosystems are highly sensitive to shifts
under oceanographic conditions (38).

To address these challenges, we present the first consistent spatial
and temporal estimates of daily Chl-a concentrations across low- to
mid-latitude oceans (45°N to 45°S) from 2001 to 2023 using deep
learning algorithms (Fig. 1B). We developed the Ocean Chl-a recon-
struction Neural Ensemble Network (OCNET) model (Materials and
Methods), which integrates key environmental factors influencing
phytoplankton growth (fig. S1), satellite observations, and BGC-
Argo data (table S1). The OCNET model produces a daily Chl-a da-
taset with a 0.25° by 0.25° spatial resolution across low- to mid-latitude
oceans and demonstrates strong agreement [coeflicient of determi-
nation (R?) = 0.93, relative bias (RB) = 4.09%] with satellite-based
data (Fig. 1C).

RESULTS

Chl-a trends for low- to mid-latitude oceans from

2001 to 2023

The low- to mid-latitude oceans are becoming progressively less green,
with Chl-a concentrations exhibiting a significant decline from 2001
to 2023 at a mean annual rate of decrease of (0.35 + 0.10) X 10™° mg
m™ year™" (Fig. 2). Coastal regions have experienced an even more
pronounced decline, at an average rate of (—0.73 + 0.22) X 107> mg
m ™ year™', about double the global average (45°N to 45°S), with
the most significant reductions observed near river estuaries. In the
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Fig. 1. Overview of the daily Chl-a concentration dataset across low- to mid-latitude oceans from the Ocean Chl-a reconstruction Neural Ensemble Network
model. (A) Schematic of monitoring techniques and processes regulating marine phytoplankton biomass. Under optimal environmental conditions, phytoplankton
growth depends primarily on light and nutrients, influenced by natural and anthropogenic factors, including ocean circulation, mixed-layer dynamics, upwelling, river
export, and solar cycles. (B) Spatial distribution of mean Chl-a concentrations spanning 45°N to 45°S from 2001 to 2023, based on the Ocean Chl-a reconstruction Neural
Ensemble Network (OCNET) model. This model integrates satellite observations, Biogeochemical Argo (BGC-Argo) data, and key environmental factors using a deep learn-
ing approach, producing a global daily Chl-a concentration dataset at a resolution of 0.25° by 0.25°. (C) Log-log scatterplot of space- and time-matched Chl-a concentra-
tions estimated by OCNET and corresponding National Oceanic and Atmospheric Administration (NOAA) Multi-Sensor Level-1 to Level-2 (MSL12) satellite data (Materials
and Methods). Pixel color represents data density. The black dashed line indicates the linear regression fit [coefficient of determination (R?) = 0.93; P < 0.0001], and the

blue solid line represents the idealized 1:1 relationship.

Northern Hemisphere, areas with significant declines are 4.4 times
larger than those with significant increases, whereas in the Southern
Hemisphere, these areas are approximately equal in extent. Under
the influence of upwelling and currents, a westward-expanding
Chl-a-enriched region has been observed in the equatorial Pacific
Ocean (Fig. 2A) (39). We further analyzed 40 coastal regions based
on large marine ecosystem (LME) regions (Materials and Methods).
Among these, 40% show a statistically significant declining trend in
Chl-a concentration, while only 12.5% exhibit significant increases
(figs. S2 and S3).

We define marine high Chl-a (MHC) events as periods of ex-
treme Chl-a concentrations exceeding specific thresholds (90th per-
centile and 0.2 mg/m3 ) within a limited time frame (Materials and
Methods). Between 2001 and 2023, we observed a substantial reduc-
tion in the frequency of MHC events across most coastal regions,
with an overall decline of 1.78% per year (Fig. 2E). Regions with
significant decreases in MHC events outnumber those with increas-
es by a factor of 4.5. The spatial pattern reveals more pronounced
declines near the equator and midlatitudes, with relatively lower
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rates between 15° and 30° latitude in both hemispheres. The declin-
ing trends in coastal MHC events align closely with changes in Chl-
a concentrations in key regions such as the eastern United States,
West Africa, and East Asia (Fig. 2). Areas with higher Chl-a concen-
trations generally exhibit more pronounced reductions in MHC event
frequency (fig. S2). Despite the overarching low- to mid-latitude
decline, certain regions, such as the North Brazil Shelf, Canary Cur-
rent, and Northeast Australian Shelf, show increases in MHC events.
These localized trends are likely due to intensified human activities,
including increased nutrient exports that elevate Chl-a concentra-
tions (40, 41).

Climate effects on Chl-a concentrations

Phytoplankton growth in low- to mid-latitude oceans is primarily
constrained by nutrient availability (42, 43). Nutrients are typically
transported from deeper ocean layers to the upper ocean via vertical
mixing and upwelling; however, the pycnocline at the base of the
mixed layer acts as a barrier, limiting these nutrient supply process-
es (2, 44). Recent decades have seen intensified ocean stratification,
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Fig. 2. Trends in global Chl-a concentration and coastal marine high Chl-a events across low- to mid-latitude oceans from 2001 to 2023. (A) Map of Chl-a concen-
tration trends between 45°N and 45°S, with 32.4% of the ocean area showing a significant decrease and 17.6% showing a significant increase (95% confidence level). Black
dots indicate areas where trends are statistically significant. Latitudinal profiles depict the total area with significant trends (solid lines) and all trends (dashed lines) along
the east-to-west direction, with red and blue representing positive and negative trends, respectively. (B) Trends in coastal marine high Chl-a (MHC) events, with 21.6% of
coastal regions exhibiting a significant decrease and 5.0% showing a significant increase (95% confidence level). Coastal boundaries are defined on the basis of LME re-
gions (Materials and Methods). (C and D) Time series of mean Chl-a concentration for low to mid-latitudes (45°N to 45°S) (C) and coastal regions (D). Solid lines represent
annual averages, and dashed lines represent linear trends. Shaded areas denote the 95% confidence intervals of the regression analysis. (E) Time series of the annual fre-

quency of coastal MHC events (solid lines) and their linear trend (dashed lines).

driven by a more rapid warming of the upper ocean compared to
deeper layers due to global climate change (45, 46). This increased
stratification is likely weakening vertical nutrient transport and thus
limiting nutrient availability for phytoplankton growth in the upper
ocean. The sharp decline in Chl-a concentration in the equatorial
Atlantic Ocean is closely related to the limitations in nutrient acqui-
sition (Fig. 2A) (44). To evaluate the role of upper-ocean warming in
these dynamics, we examine the relationship between changes in SST
and Chl-a concentrations. Globally, the Pearson correlation coefficient

Hong et al., Sci. Adv. 11, eadx4857 (2025) 17 October 2025

between SST and Chl-a time series is —0.81 (P < 0.01), underscoring
the notable role of rising SST in influencing Chl-a dynamics (fig. S4)
(2, 3, 16).

The frequency of MHC events appears to be more sensitive to
global warming than mean Chl-a concentrations (fig. S5). To ex-
plore the relationship between SST and the frequency of MHC
events, we removed the annual trend, seasonal cycles, and autocor-
relation from the data (Materials and Methods and fig. S6). Across
the globe, 75% of LME regions show significant negative correlations
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between SST and MHC event frequency (Fig. 3). This suggests that
as SST anomalies rise, intensified ocean stratification suppresses
vertical nutrient transport (42, 45), thereby reducing the occurrence
of MHC events in coastal waters. Vertical mixing may also play a
supplementary role in regulating MHC events (24, 46). Approxi-
mately 42% of coastal regions exhibit significant positive correla-
tions between MHC event frequency and changes in mixed-layer
depth (MLD) (figs. S7 and S8). This indicates that deeper mixing

can occasionally mitigate the impacts of stratification by bringing
nutrients to the upper ocean, sustaining phytoplankton growth.
However, these effects are region specific and context dependent.
Human activities further complicate nutrient dynamics in coastal
regions. Some regions with significant positive correlations between
MHC event frequency and SST anomalies are heavily influenced by
human activities (40, 41), such as nutrient inputs from river dis-
charge (5, 22). For instance, the North Brazil Shelf is notably affected
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Fig. 3. The role of global warming on MHC events. (A) Correlation between SST and MHC event frequency after removing annual trends, seasonal cycles, and autocor-
relation (Materials and Methods). The pie chart indicates the proportions of regions with significant or insignificant positive and negative correlations. Below, time series
of SST anomalies are shown for the global oceans (45°N to 45°S) and coastal regions. The expanded forms of LME regions are listed in table S2. (B) Time series of SST, MHC
event frequency, and Chl-a concentrations in six coastal regions: the California Current, Northeast US Continental Shelf, East China Sea, Bay of Bengal, Patagonian Shelf,
and Southeast Australian Shelf. Pearson correlation coefficients (r) between MHC event frequency and Chl-a concentration with SST are indicated. Asterisks denote statis-

tically significant correlations at the 95% confidence level.
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by deforestation and wildfires in the adjacent Amazon basin (47),
which alter nutrient fluxes through runoff and atmospheric deposi-
tion. Similarly, the Northeast Australian Shelf faces nutrient enrich-
ment challenges linked to poor water quality management in the
Great Barrier Reef catchment (41). These anthropogenic contribu-
tions underscore the dual role of natural and human-driven pro-
cesses in shaping Chl-a dynamics in coastal ecosystems.

Implications for PP

Chl-a serves as a reliable indicator of marine PP (3, 11) and plays a
critical role in regulating oceanic biological processes and global
carbon dynamics. In this study, we used the well-established verti-
cally generalized production model (VGPM) (3, 11, 48) to estimate
PP using Chl-a data derived from the OCNET model, along with
SST and photosynthetically active radiation (Materials and Meth-
ods). Our analysis suggests a significant decline in marine PP across
low- to mid-latitude (45°N to 45°S) regions at a rate of —0.088% per
year [—0.032 + 0.025 billion tonnes (Gt) C year ; Fig. 4A] consis-
tent with the observed downward trend in Chl-a concentrations
(Fig. 2). Notably, coastal regions exhibit an accelerated decline in PP
at a rate of —0.145% per year (—0.015 + 0.008 Gt C year™; Fig. 4B),
with a relative rate approximately 60% higher than the global average.
These findings align with previous studies on global PP (3, 38, 44)
but show variability in magnitude due to differences in spatial and
temporal coverage. The more pronounced decline in coastal PP

emphasizes the vulnerability of these regions to recent climatic and
anthropogenic changes. Our results differ from earlier studies based
on ship measurements and earlier satellite datasets, which suggested
a slower decline or even increasing rates of Chl-a in coastal regions
compared to offshore areas (14). This discrepancy may stem from
differences in data sources, temporal coverage, and the intensifying
impacts of climate change on coastal ecosystems (23, 49, 50). In re-
cent years, coastal regions have experienced nutrient transport re-
strictions due to dam construction and less river export (Fig. 1A)
(5, 51, 52), which are likely exacerbating declines in Chl-a and PP.
The globally consistent spatiotemporal coverage of our Chl-a data-
set enables more comprehensive insights into these dynamics, offer-
ing valuable information for understanding climate change impacts
on marine ecosystems and informing ocean management strategies.

DISCUSSION

Globally, definitions and evaluation metrics for algal blooms remain
inconsistent (7), with various approaches relying on Chl-a anoma-
lies (11) or various spectral indices (7, 53, 54) for bloom detection.
The proliferation of algae, which leads to algal blooms, is typically
associated with a marked increase in Chl-a concentration. However,
this relationship can vary depending on algal species composition
and dynamic environmental conditions. In this study, we assessed
the effectiveness of MHC events as indicators of algal blooms by
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comparing three events from different marine regions. Our results
demonstrate that MHC events are effective proxies for identifying
algal blooms (Fig. 4C and fig. S9). Leveraging the Chl-a data derived
from the OCNET model, we were able to monitor the bloom forma-
tion process on a daily timescale, providing unprecedented temporal
resolution. Moreover, our application of a “relative high-value” filter-
ing approach minimized interference from suspended sediments
and colored dissolved organic matter (28, 29), enabling more accu-
rate detection of Chl-a anomalies. Variations in the definition of algal
blooms based on Chl-a concentrations do not influence the observed
trends or conclusions of this study, as our evaluation metrics were
consistently applied across spatial and temporal scales. Our findings
reveal a negative correlation between the frequency of algal bloom
events, as indicated by MHC events, and SST (Fig. 3), suggesting
that climate change-induced, intensified ocean stratification contin-
ues to impede nutrient transport in coastal regions (25, 45, 46, 55).

While three recent studies have reported increases in both the
total number of algal bloom events and the peak Chl-a concentra-
tions globally, our findings differ considerably (7, 26, 56). This
discrepancy is largely attributable to differences in datasets; the
aforementioned studies relied on datasets with incomplete spatial
and temporal coverage, such as the MODIS-Aqua satellite dataset,
which has more than 70% data gaps (30, 32). Consequently, many
algal bloom events would inevitably be missed in those analyses.
Furthermore, the reported increases are predominantly driven by
contributions from mid- and high-latitude oceans (56), whereas
most low-latitude regions, particularly in the Northern Hemisphere,
exhibit a declining trend (7, 57), consistent with our results. While
we acknowledge that algal blooms in certain regions have intensified,
causing severe environmental impacts, and that enhanced monitor-
ing has increased bloom detection (26), our results suggest that the
overall global occurrence of algal blooms is declining.

A key contribution of our study is the development of a globally
consistent, daily Chl-a concentration dataset generated using deep
learning algorithms. This dataset exhibits spatiotemporal continuity
and satellite-like quality, enabling robust trend analysis. Our findings
show a significant decline in Chl-a concentrations [(—0.35 + 0.10) X
107 mg m ™ year™'] across low to mid-latitudes, with a more pro-
nounced decrease in coastal regions [(—0.73 + 0.22) X 1073 mg m™>
year™']. In addition, the annual frequency of MHC events exhibits a
notable downward trend (—1.78% year_l) under the influence of cli-
mate change. These results establish a clear link between declining
global ocean Chl-a concentrations, coastal MHC events, and in-
creasing SST, suggesting that a warmer upper ocean (and likewise a
strengthening of stratification) is likely to result in reduced global
marine PP (38, 44) and fewer phytoplankton blooms. These changes
will profoundly affect the magnitude and distribution of marine
ecosystem functioning (12, 58).

MATERIALS AND METHODS

Target data preparation and calibration

In this study, satellite-derived data corrected with in situ measure-
ments served as the target dataset for the OCNET model, ensuring
high-quality simulations. Specifically, the National Oceanic and At-
mospheric Administration (NOAA) Multi-Sensor Level-1 to Level-2
(MSL12) dataset was used as the primary training data source for
the OCNET model (59) (https://coastwatch.noaa.gov/cwn/product/

Hong et al., Sci. Adv. 11, eadx4857 (2025) 17 October 2025

noaa-msl12-multi-sensor-dineof-global-9km-gap-filled-products-
chlorophyll-diffuse.html). This dataset provides near real-time, gap-
free global Chl-a concentration maps by merging data from Visible
and Infrared Imaging Radiometer Suite (VIIRS) and OLCI-Sentinel-
3A satellites, with gaps filled using the Data Interpolating Empirical
Orthogonal Function method. The MSL12 dataset offers broad spa-
tial coverage, revealing intricate marine features in coastal and in-
land waters. However, its temporal coverage is limited to post-9
February 2018 (table S1). To correct biases in the MSL12 dataset,
Chl-a measurements from the BGC-Argo program were used. BGC-
Argo extends the Argo program by collecting ocean biogeochemical
parameters, including Chl-a, alongside physical variables such as
temperature, salinity (SAL), and pressure (https://biogeochemical-
argo.org/data-access.php). Only “good data” profiles with delayed-
time calibrated values were included in this study.

The calibration process comprised two steps: (i) determining the
optimal depth for matching BGC-Argo and satellite data and (ii)
correcting the MSL12 data using artificial neural networks (ANN;
fig. S1). Chl-a concentrations from BGC-Argo are measured at vari-
ous depths during the float’s descent and ascent, while satellite data
represent surface ocean conditions, typically within the upper mixed
layer. As Chl-a distribution varies with depth and location, optimal
depth matching is critical for accurate calibration. The optical depth
was identified by minimizing the absolute deviation between MSL12
data and the average BGC-Argo Chl-a concentration at specific
depths. To enhance reliability and mitigate outlier influence, we
used an ANN trained on geographic coordinates (longitude and
latitude) and MLD variables (MLDO001 and MLDO003; table S1) from
the Ocean Reanalysis System 5 (ORAS5) reanalysis dataset (https://
cds.climate.copernicus.eu/datasets/reanalysis-oras5?tab=overview).
The best-performing ANN architecture, based on validation accu-
racy, consisted of three hidden layers with 5, 10, and 5 neurons, re-
spectively. This approach ensured consistent optimal matching
depths within the same grid cell, yielding a unified spatial map of
optimal depths.

Using the optimal depth map, we recalculated surface Chl-a con-
centrations from BGC-Argo data, referred to as BGC-Argo (cor-
rected). These values served as the benchmark for calibrating the
MSL12 dataset. Given that satellite-derived Chl-a estimates often
exhibit biases, especially in turbid coastal areas (29, 32, 60), ANN-
based correction was applied. Input variables included latitude, lon-
gitude, MLD variables, and the original MSL12 Chl-a values. Data
were split into training (70%), validating (15%), and testing (15%)
sets. The optimal ANN architecture for this step had three hidden
layers with 20, 20, and 13 neurons, respectively. Following the cor-
rection, the R* value between MSL12 and BGC-Argo data improved
from 0.41 to 0.78, while the root mean square error (RMSE) de-
creased from 0.75 to 0.55.

To ensure spatial continuity of the corrected MSL12 data, we
used an inverse distance weighting (IDW) fusion algorithm. BGC-
Argo correction influence was limited to a 500-km radius, with
weights decreasing exponentially with distance (Eq. 1). The cor-
rected Chl-a concentration for each grid cell (Eq. 2) incorporated
data from all BGC-Argo sites within this radius. The final corrected
dataset spans 9 February 2018 to 31 December 2023, offering high
spatiotemporal continuity and improved accuracy for global Chl-a
monitoring

Weight,, = ¢ P/ — ¢ (1)
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Ccor = Z Cargo_cor X WelghtD + Cmsl X (1 - Z WelghtD) (2)

where Weightp, is the weight of a grid cell at distance D (in kilome-
ters) from a BGC-Argo site. R is the maximum distance range (500 km;
D < R). Cg is the corrected Chl-a concentration for the grid cell.
Cargo_cor 18 the Chl-a concentration from BGC-Argo sites within the
influence range. Cpg is the original MSL12 Chl-a concentration for
the grid cell.

OCNET model architecture

This study uses Chl-a data derived from the updated OCNET mod-
el (fig. S1), an ensemble convolutional neural network architecture
designed for reconstructing global sea surface Chl-a concentration.
The OCNET model integrates environmental variables related to
phytoplankton growth, enabling the generation of spatially and tem-
porally complete Chl-a concentration datasets (61). The model pri-
marily incorporates SAL, SST, sea surface pressure (SSP), and MLD
from reanalysis datasets, as well as photosynthetically active radia-
tion (PAR) and Chl-a concentration data from satellite datasets
(fig. S1 and table S1). While these variables capture the key drivers
of phytoplankton dynamics, certain anomalous events (11, 41, 62)
such as wildfires, land-use changes, and wastewater discharges
remain challenging to incorporate directly as inputs. Notably,
human-induced impacts vary regionally and are difficult to quantity,
potentially leading to localized underestimations of Chl-a (fig. S10).
However, these limitations do not compromise the global-scale reli-
ability of OCNET-derived Chl-a estimates, which remain consistent
with satellite observations (Fig. 1C and fig. S10). The comprehensive
evaluation results reveal that the OCNET model achieves excellent and
comparable performance across the training set (RMSE = 0.225),
validation set (RMSE = 0.248), and testing set (RMSE = 0.301), en-
suring the model’s robustness and precluding potential overfitting.

In its initial implementation (61), the OCNET model was de-
signed primarily for open-ocean Chl-a simulations, given the limit-
ed availability and lower reliability of satellite-based observations in
coastal regions (29, 63). Coastal areas, such as the East China Sea,
often suffer from data gaps or high uncertainty in satellite-derived
Chl-a estimates (30), rendering their use as training targets unreli-
able. To enhance the model’s performance in these regions, we in-
corporated BGC-Argo observational datasets to correct the model’s
target data (Materials and Methods and fig. S1).

Alongside NOAAs MSL12 dataset, the Ocean-Colour Climate
Change Initiative (OCCCI) version 6 dataset (https://climate.esa.
int/en/) serves as a key satellite-based Chl-a data source for OCNET
(64). OCCCI products, derived from multiple sensors, including the
European Space Agency’s Moderate Spectral Resolution Imaging
Spectroradiometer, NASA’s Sea-viewing Wide Field-of-view Sensor,
MODIS-Aqua, and NOAA’s VIIRS, span from 1997 onward (64).
However, because OCCCT’s daily and monthly data often contain
missing values, they cannot be used directly as model inputs. In-
stead, we used its climatology dataset as a background field to con-
strain Chl-a concentration estimates within realistic ranges (61).
The OCCCI climatology dataset, providing 12 months of valid obser-
vational data, is used to generate a continuous baseline for Chl-a
from 1 January 2001 to 31 December 2023, through temporal smooth-
ing and interpolation.

The OCNET model relies on five key environmental variables,
i.e., SST, SAL, PAR, SSP, and MLD, each of which plays a crucial role
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in phytoplankton growth and distribution (2, 3, 7, 65). SST influ-
ences algal metabolic rates, enzymatic activity, cell division, and
growth cycles, while SAL affects osmoregulation and balance in
marine phytoplankton (66), making both variables essential inputs.
Hydrodynamic changes in wind patterns and ocean currents can
also affect surface algal distribution; to represent this effect, we in-
corporate SSP as an input variable. The influence of MLD on Chl-a
concentrations varies seasonally: In winter, deeper mixing brings
nutrient-rich waters to the surface, promoting phytoplankton growth,
whereas in summer, a shallower mixed layer restricts nutrient sup-
ply, leading to potential declines in Chl-a. The seasonal transition of
MLD is thus closely linked to phytoplankton growth cycles. We
sourced SSP and SST data from the Fifth Generation of ECMWEF
Reanalysis (ERA5) (67) (https://cds.climate.copernicus.eu/datasets/
reanalysis-era5-single-levels?tab=overview), while SAL, MLD001,
and MLDO003 were obtained from the ORAS5 dataset (68) (https://
cds.climate.copernicus.eu/datasets/reanalysis-oras5¢tab=over-
view), to serve as input data for the OCNET model.

PAR, a critical energy source for photosynthesis, influences phy-
toplankton photosynthetic efficiency, biomass accumulation, and
growth dynamics (69). To ensure robust coverage, we selected PAR
data from multiple satellite sources, including MODIS-Terra/Aqua
and the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard
the Suomi National Polar-orbiting Partnership (SNPP) (https://
oceancolor.gsfc.nasa.gov/13/). Given the inherent spatial gaps and
potential biases among different satellite-derived PAR products,
we applied preprocessing and fusion techniques to harmonize
these datasets (61). We first performed systematic bias calibra-
tion for the other two datasets using MODIS-Aqua as the reference.
Subsequently, we integrated the three calibrated datasets by calcu-
lating their arithmetic mean at grid cells where at least two sources
had valid observations, facilitating spatial complementarity. For
cells with only one valid dataset, the available value was retained.
Last, remaining minor spatial gaps were filled using spline curve
interpolation, ensuring consistent data coverage for subsequent
analyses (61).

Considering the typical monthly growth cycle of phytoplankton,
we calculated the environmental factors influencing marine algal
growth by averaging the data from the preceding month. Specifi-
cally, SST, SAL, and PAR were averaged over the previous month
and used as inputs of the OCNET model. In addition, daily values of
SST, SSP, MLDO001, and MLD003 were included as separate input
variables (fig. S1E).

The study domain spans from 45°N to 45°S, a choice based on
data reliability and research logic. High latitudes have notable sea-
sonal satellite data gaps, particularly in sea ice—covered areas where
ice severely disrupts data quality. In high-latitude eutrophic regions,
phytoplankton growth is limited primarily by light and temperature,
with environmental patterns different and more complex than those
in low to mid-latitudes. Therefore, we chose low- to mid-latitude
oceans (45°N to 45°S) as our study region. To optimize computa-
tional efficiency while preserving regional characteristics, we divid-
ed the global ocean into 405 regions, each measuring 16° by 16° and
containing 64 grid cells per side. These regions were divided into 45
horizontal and 9 vertical bands, each independently trained using a
U-Net-based deep convolutional neural network. The upper-left
grid cell of each region was determined using Eqs. 3 and 4

Top = 44.875 — (zy—1) X 9.25 3)
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Left = —179.875 + (zx—1) X 8 (4)

where the variables Top and Left represent the latitude and longitude
of the uppermost and leftmost parts of the region, respectively. The
row number zy (ranging from 1 to 9) and column number zx (rang-
ing from 1 to 45) define the region’s position within the segmen-
tation grid.

To minimize boundary effects introduced by regional segmenta-
tion, adjacent regions overlap by 8° latitudinally and 6.75° longitudi-
nally. For these overlapping areas, we applied an IDW method
(Egs. 5 and 6) to compute a weighted average of the model outputs

D=1/(-C’+ (j-C)* (5)
W;;j=1-D/Dy (6)

where D is the distance between a given grid cell and the center of
the region, with i and j representing the grid cell’s row and column,
respectively. The center point C is set at C = 32.5. The weight W;; is
assigned on the basis of the relative distance D, where Dy,ax repre-
sents the maximum possible distance from the center to the four cor-
ner grid cells. This approach ensures smooth transitions across regional
boundaries, improving the robustness of the final Chl-a estimates.

Definition of MHC events and coastal regions

In this study, we define MHC events as occurrences when Chl-a
concentrations exceed both a reference percentile threshold and an
absolute threshold, calculated over the entire time series. Specifi-
cally, we use the 90th percentile of the time series combined with an
absolute threshold of 0.2 mg/m”. This definition is inspired by the
concept of marine heatwaves, where MHC events represent occur-
rences with defined start and end times (70, 71). Following a similar
approach, we consider consecutive occurrences separated by gaps of
2 days or less, followed by another event lasting at least 3 days, as a
continuous MHC event. In summary, MHC events are spatiotempo-
rally coherent extreme events, where occurrences exceeding the
thresholds on consecutive days or neighboring grid points are treat-
ed as part of the same MHC event.

The Chl-a dataset used in this study is generated by the OCNET
model, providing satellite-like observations. However, these data ex-
hibit considerable roughness and complexity due to factors includ-
ing measurement errors, long-tailed distributions, and abrupt system
state transitions, all of which contribute to unstable and fluctuating
time series (72-74). This variability complicates threshold-based
MHC event detection. Previous studies have noted that Chl-a con-
centration data in nearshore coastal areas exhibit lower elasticity,
meaning that concentration variations are relatively stable com-
pared to offshore regions, where Chl-a values are generally lower but
more sensitive to threshold selection (75). Given this distinction, we
focus our analysis on coastal regions to mitigate the impact of ex-
treme data fluctuations. To further reduce noise and enhance event
detection stability, we apply a Gaussian filter (¢ = 0.5) to preprocess
the Chl-a concentration data, which smooths out minor fluctua-
tions while preserving the primary signal.

Despite data preprocessing and the selection of lower-elasticity
nearshore data, identifying persistent MHC events remains chal-
lenging due to the complexity of satellite-like datasets. To ensure
robust detection, we set a minimum event duration of 3 days, which
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is shorter than the commonly used 5-day threshold for marine heat-
waves (71). This adjustment yields a global average of two to five
MHC events per year, a range that we consider reasonable based on
previous analyses.

The selection of threshold values is a critical factor in event de-
tection. Given the high elasticity of Chl-a data, we avoid using ex-
cessively high thresholds, which could lead to a disproportionate
number of false detections caused by random fluctuations. Overly
stringent thresholds could also exaggerate the effects of data uncer-
tainty on the estimated MHC event frequency. Therefore, after exten-
sive testing, we adopted a combined threshold of the 90th percentile
and 0.2 mg/m’, ensuring a balance between robustness and sensitiv-
ity. Sensitivity analyses confirm that the primary temporal trends of
MHC events remain consistent across different threshold settings
(fig. S11), demonstrating the robustness of our approach.

MHC events are not equivalent to phytoplankton bloom events.
While phytoplankton blooms are typically based on absolute bio-
mass or cumulative biomass thresholds (76), MHC events are pri-
marily determined by a relative threshold (90th percentile) with an
additional absolute cutoff (0.2 mg/ m°). This means that MHC events
can occur even during periods of low Chl-a concentration (i.e.,
outside traditional bloom seasons). Although blooms are more
frequent in high Chl-a regions and seasons, extreme Chl-a events
in low-concentration areas are also ecologically notable and war-
rant attention.

For coastal analyses, we use the LME framework (77). Among
the 66 LMEs worldwide, we focus on low- to mid-latitude LMEs,
excluding the Mediterranean Sea, Red Sea, and Persian Gulf due to
their unique oceanographic characteristics. A total of 40 LMEs was
selected for this study (table S2). LME boundaries are sourced from
www.sciencebase.gov/catalog/item/55¢77722e4b08400b1fd8244.

Autocorrelation removal

Autocorrelation denotes the dependence between adjacent observa-
tions in a time series. Ignoring this dependency in cross-variable
correlation analysis may induce spurious significance (56). The core
of autocorrelation removal is to disentangle the intrinsic dynamic
structure of individual time series from genuine intervariable rela-
tionships, thereby ensuring that correlation results reflect authentic
causal or synergistic linkages between variables. Here, we assume
that both MHC event frequency and SST follow the first-order au-
toregressive model (Eq. 7) (56)

&=y, —¢y_,t=234,...,T )

where ¢; denotes white noise at time t (free of autocorrelation).
Using Eq. 7, the original series y; can be transformed into a residual
series g, without autocorrelation, achieving the purpose of autocor-
relation removal. The first-order autocorrelation coefficient ¢ is de-
rived from Eq. 8 (56)

;(}’t _y) (yt—l _y)
Z(yt _;)2

t=1

b= ®)

Calculation of PP
To estimate phytoplankton carbon fixation capacity, we applied a
light-dependent, depth-resolved model known as the VGPM (48).
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The VGPM simplifies the computation of phytoplankton PP by fo-
cusing on surface-layer variables while incorporating depth-resolved
considerations. The model primarily relies on three key inputs: SST,
PAR, and Chl-a concentration. Phytoplankton carbon fixation, de-
noted as PP, represents the integrated PP from the ocean surface
to the euphotic depth Z, and is expressed in milligrams of C per
square meter per day. The computation follows Eq. 9

PP, =0.66125X P} X [Eg+ (Eg+4.1)] X Zey X Cyq X Dyy (9)

where prt is the maximum carbon fixation rate per unit Chl-a with-
in the water column [in milligrams of C per milligram of chlorophyll
per hour], which is temperature dependent and given by Eq. 10; E
is PAR (einstein per square meter per day); Cy represents Chl-a
concentration (in milligrams per cubic meter); Z, is the euphotic
depth, defined as the depth where 1% of surface PAR remains avail-
able, derived from Chl-a using Egs. 11 and 12 (1); and Dj is the
photoperiod (in hours), determined by latitude, longitude, and date.
The temperature-dependent function for prt follows

P} ==327x107°T"+3.4132 X 107°T° — 1.348 X 107*T°
+2.462 % 107374 —0.0205T° 4 0.0617T% + 0.2749T + 1.2956

where T represents SST (°C).
The euphotic depth (Z.,) is calculated as

{ 200 X Cpp, ", C,p < 10
Zeu =

11
568.2 X C,p, 07, C, > 10 (11)
where the total pigment content (Cyy) is defined as
Ciot =379 X% Csato'548 (12)

For global PP, calculations, we used SST data from ERA5,
satellite-derived PAR data, and OCNET Chl-a products (table S1).
The final global PP estimates were obtained by integrating PP, over
spatial grids, weighted by corresponding grid areas.

Supplementary Materials
This PDF file includes:

Figs.S1to S11

Tables S1.and S2
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